首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zn-Fe, Zn-Ni and Zn-Ni-Fe coatings were electrodeposited galvanostatically on mild steel from acidic baths (pH 3.5) consisted of ZnCl2, NiCl2, FeCl2, gelatin, sulfanilic (p-aminobenzenesulfonic) acid and ascorbic acid. Cyclic voltammetry showed that the effect of gelatin was more pronounced than that of sulfanilic acid, and that the deposition of the ternary alloy behaved differently from the deposition of the binary alloys. In all three systems, the Faradaic efficiency was higher than 88%, the rate of Zn deposition was heavily influenced by mass-transport limitation at high applied current densities, and the deposition was of anomalous type. For each applied current density, the concentrations of Ni and Fe in the ternary alloy were higher than the corresponding concentrations in the binary alloys. The hardness of Zn-Ni coatings was the highest, while that of Zn-Fe coatings was the lowest. The Zn-Ni-Fe coatings were the smoothest, had distinguished surface morphology, and contained ZnO in the bulk, not just on the surface. The lowest corrosion rate in each alloy system (214, 325 and 26 μm year−1 for Zn-Ni, Zn-Fe and Zn-Ni-Fe, respectively) was characteristic of coatings deposited at 30, 30 and 40 mA cm− 2, respectively. The higher corrosion resistance of the ternary alloy was also reflected by a higher corrosion potential, a higher impedance and a higher slope of the Mott-Schottky line. The enhanced corrosion behavior of the ternary alloy was thus attributed to its chemical composition, phase content, roughness and the synergistic effect of Ni and Fe on the n-type semiconductor surface film.  相似文献   

2.
介绍了在汽车、航空航天等行业中得到广泛应用的钢铁零件电镀Zn-Ni合金镀层,以及往碱性、氯化物等锌镍合金镀液中加入Fe、Co、Mn、Ce、P等第三种元素所获得的锌镍三元合金镀层,具有更优良的耐腐蚀性、催化性等性能的情况。介绍了往Zn-Ni合金镀液里加入氧化硅、氧化铈、氧化钛、氧化铝、碳化硅等纳米颗粒的进展情况,发现含有纳米颗粒的锌镍复合镀层具有耐腐蚀性、耐磨损性、热稳定性更好,硬度更高等优点。梳理了2016年以来在Zn-Ni合金电镀中添加第三种元素和纳米颗粒的多层镀层研究新进展。从Zn-Ni单一镀液中沉积Ni-P和Zn-Ni合金多层镀层时,在低电流密度下沉积出Ni-P层;在较高电流密度下,沉积出含3.2%P的Zn-Ni-P合金镀层,这种多层镀层可以大幅度提高钢铁零件的防腐蚀性能。介绍了在含12%Ni的Zn-Ni镀层上镀覆Ni-Co-SiC纳米复合镀层的情况,这种多层结构既可以提高镀层的结合力,又可提高其在3.5%NaCl溶液中的耐腐蚀性能。该复合镀层是一种硬度高、磨损量低的新型Zn-Ni合金复合镀层。  相似文献   

3.
As an effort to increase the corrosion resistance of conventional monolayer Zn-Ni alloy coating, the multilayer Zn-Ni alloy coating have been done electrolytically on mild steel (MS), using gelatin and glycerol as additives. Multilayered, or more correctly composition modulated multilayer alloy (CMMA) coatings have been developed using square current pulse. Successive layers of alloys, in nanometric scale having alternately changing composition were fabricated by making the cathode current to cycle between two values, called cyclic cathode current densities (CCCD’s). The coatings having different configuration, in terms of composition and thicknesses of individual layers were developed and their corrosion performances were evaluated by electrochemical methods. The corrosion rate (CR)’s were found to decrease drastically with progressive increase in number of layers (up to 300 layers), and then increased. The coating configurations have been optimized for best protection against corrosion. The CMMA Zn-Ni coating having 300 layers was found to be about 37 times more corrosion resistant than corresponding monolayer alloy, developed from same bath for same time. High protection efficacy of the coatings were attributed to alternate layers of alloys having different surface structure and composition, supported by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) study, respectively. Optimization procedure has been explained, and results are discussed.  相似文献   

4.
Cadmium (Cd) catalyzed Zn-Ni alloy plating has been accomplished galvanostatically on mild steel (MS) using gelatin and glycerol as additives. The effect of addition of Cd into Zn-Ni bath has been examined in terms of nickel (Ni) content and corrosion resistance of Zn-Ni-Cd ternary alloy coatings. The process and product of electrolysis under different concentrations of additives and Cd have been investigated by cyclic voltammetry (CV). The effects of current density (c.d.) on Ni content of the alloy have been studied by spectrophotometric method, supported by EDX analysis. The deposition has been carried out under different concentrations of Cd ranging from 0.004 to 0.1 M. The corrosion rates (CR) of Zn-Ni alloy coatings have been found to decrease drastically with addition of Cd. It has been also revealed that the CR of binary Zn-Ni alloy coatings decreased with the increase of Cd concentration only up to a certain optimal concentration, i.e., up to 0.02 M, and then remained unchanged. An effort to change the anomalous type of codeposition into normal one by changing the molar ratios of the metal ions, i.e. [Cd2+]/[Ni2+] as 0.01, 0.05 and 0.25 has remained futile. CV study demonstrated an important role of Cd in mutual depositions of Zn2+ and Ni2+ ions by its preferential adsorption, thus leading to the increased Ni content of the alloy. The bath composition and operating parameters have been optimized for deposition of bright and uniform Zn-Ni-Cd alloy coatings. Changes in the surface morphology and phase structure of Zn-Ni alloy coatings due to addition of Cd has been confirmed by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) study respectively. Experimental investigations so as to identify the role of Cd in codeposition Zn-Ni alloy coatings have been carried out and the results are discussed.  相似文献   

5.
The morphologies and corrosion resistance of electrodeposited zinc-cobalt compositionally modulated alloy multilayer coatings produced from a sulphate bath have been investigated and reported in this paper. Various current density waveforms were designed using a computer-aided pulse plater unit to deposit zinc-cobalt alloy layers of alternate compositions from 10% cobalt to 70% cobalt. Different numbers of layers with different thicknesses were deposited by designing a variety of current density waveforms. It was shown that designing waveforms with steps to produce a gradual increase or decrease in current densities can prevent crack formation and improves the quality of Zn/Co CMAM coatings. Neutral salt spray corrosion tests showed that Zn/Co CMAM coatings have better corrosion resistance than single layer Zn-Co alloy coatings. Effects of bath temperature and agitation on the corrosion resistance of these CMAM coatings were also investigated. It was found that the best corrosion protection could be achieved for a two layered Co/Zn CMAM coating deposited at 25–30 °C from a bath with a high rate of agitation.  相似文献   

6.
The corrosion behaviour of electrodeposited Zn, Zn-Co, Zn-Fe and Zn-Ni coatings without and with Chromate films was studied in alkaline solutions and mortar probes. DC polarization measurements were used for electrochemical characterization of the investigated samples, while AES XPS techniques were applied for the Chromate film analysis. The stability of the anodically formed oxide films on unchromated coatings appeared to be dependent on their composition. The oxide layer stability in Cl free NaOH solution was higher for Zn-Ni and Zn-Co alloys, while introduction of Cl ions caused lowering of stability especially for Zn-Ni coating. The detected corrosion current values implied that unchromated Zn alloys did not possess higher corrosion resistance in alkaline media containing Cl ions. Meanwhile, chromated Zn-Co coatings exhibited the beneficial effect of alloying for corrosion in alkaline solutions and concrete. A higher concentration of Cr(Vl) compounds in the passive Chromate layer of the alloyed sample may be the reason for its superior corrosion resistance.  相似文献   

7.
The corrosion of Zn-Ni alloy coatings in pure and NaHCO, containing Nad solutions was investigated under open circuit potential conditions. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques were applied for the alloy surface characterisation, while direct current plasma emission spectrometry was used for test solution and corrosion product film analysis. It has been established that Zn dissolves preferentially leaving a top layer slightly enriched with Ni. However, this layer does not act as a barrier layer for the further corrosion attack. The presence of NaHCO3, in NaC! solution causes a reduction in the corrosion rales of Zn-Ni alloy and the thickness of corrosion product (oxide) film, as well as affecting the ratio of the soluble and insoluble fractions of ionised Zn and Ni and the development of the surface morphology. In a pure NaCl solution Zn-Ni corrosion occurred with surface roughening, while in the presence of NaHCO3 the process was accompanied by surface smoothing.  相似文献   

8.
The electroplating of ternary Zn-Ni-Co alloy, surface morphology and corrosion resistance were investigated and contrasted with the characteristics of Zn-Ni electrodeposits. The investigation of electrodeposition was carried out using cyclic voltammetry and galvanostatic techniques, while potentiodynamic polarization resistance and anodic linear sweeping voltammetry techniques were used for corrosion study. Under the examined conditions, the electrodeposition of the alloy was of anomalous type. It was found that the obtained Zn-Ni-Co alloy exhibited more preferred surface appearance and better corrosion resistance compared to Zn-Ni alloy that electrodeposited at similar conditions. During the cathodic scan of cyclic voltammetry, a cathodic peak at − 574 mV is appeared and correlated with the deposition of sulfur liberated from the reduction of sulphate group in the presence of H+. Up to four anodic peaks were obtained by cyclic voltammetry technique, two correlated with zinc oxidation from pure deposited Zn and γ-Ni5Zn21 phases and two correlated with oxidation of cobalt and nickel, were observed. The phase structure, surface morphology and chemical composition of the deposits were characterized by means of X-ray diffraction analysis, scanning electron microscopy and atomic absorption spectroscopy, respectively.  相似文献   

9.
    采用中性盐雾试验对Zn-Ni合金镀层的耐蚀行为进行了研究,并用扫描电镜、辉光放电光谱仪和X射线衍射仪等手段分析了不同Ni含量的Zn Ni合金镀层的微观形貌与结构、成分变化规律以及腐蚀产物.结果表明:(1)随着镀层的不断沉积,Ni的含量先增加后减小,在镀层中出现Ni的富积层;(2)Ni含量在5%~15%范围内时,Zn-Ni合金镀层的相结构体现出很复杂的结构特征:(3)经过钝化处理的Zn-Ni合金镀层的耐蚀性远高于镀Zn钝化层、镀Cd钝化层和Cd-Ti合金镀层的耐蚀性;(4)Zn-Ni合金镀层腐蚀产物主要是ZnO和ZnCl2·4Zn(OH)2,并且含有少量的2ZnCO3·3Zn(OH)2.  相似文献   

10.
Cyclic multilayer alloy (CMA) deposits of Zn-Ni were developed on mild steel from sulphate bath having thiamine hydrochloride (THC) and citric acid (CA) as additives. CMA coatings were developed galvanostatically using triangular current pulses, under different conditions of cyclic cathode current density (CCCD’s) and number of layers. The corrosion behaviors of the coatings were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy methods, and were compared with that of monolayer Zn-Ni alloy of same thickness. At optimal configuration, CMA coating represented as, (Zn-Ni)2.0/5.0/300 was found to exhibit ∼40 times better corrosion resistance compared to monolayer alloy, (Zn-Ni)3.0. Cyclic voltammetry study demonstrated that THC and CA have improved the appearance of the deposit by complexation with metal ions. The corrosion protection efficacy of CMA coatings was attributed to the difference in phase structure of the alloy in successive layers, evidenced by XRD analysis. The formation of multilayer and corrosion mechanism was analyzed by Scanning Electron Microscopy (SEM) study.  相似文献   

11.
The nanostructure Ni–Co–W alloy coatings were electrodeposited onto a copper substrate using different applied current densities, in a modified Watts-type bath. The coatings were single-phase solid solutions with average grain sizes about 6–11 nm, calculated from X-ray diffraction patterns using the Scherrer equation. EIS results showed that the adsorption and reduction of W-containing ion complexes dominated at all applied current densities. However, the diffusion of the ion complexes reached to a limitation at higher current densities. The W and Co contents of the coatings decreased with an increase in the applied current density. A homogeneous nodular surface morphology was obtained at all current densities. The coatings produced at low current densities, containing higher amount of alloying elements, showed lower corrosion resistance.  相似文献   

12.
研究了Zn-Ni合金镀液中主盐的组成、电镀工艺参数对Zn-Ni合金镀层中的含镍量及镀层性能的影响,结果表明,电流密度是影响Zn-Ni合金镀层中含镍量的主要因素.在电沉积过程中,利用计算机控制电流输出的电镀电源,通过调整施镀电流密度,制备出了由2种组成不同的Zn-Ni合金薄层交替叠加而形成的Zn-Ni合金多层镀层.SEM表面及断面显微分析结果表明:Zn-Ni合金多层镀层表面无缺陷,断面呈清晰的层状结构.   相似文献   

13.
Nickel–iron alloys with a compositional range of 24–80?wt-% iron were electrodeposited on a copper substrate from a sulphate-based bath and using a stirring rate of 100?rev?min?1. The effect of applied current density and Ni2+/Fe2+ metal ion ratio of plating bath on the properties of alloy coatings was examined. Crystal structure and grain size of Ni–Fe alloy coatings were investigated using X-ray diffraction technique. Field emission scanning electron microscopy and energy dispersive X-ray spectroscopy were used to analyse the surface morphology and chemical composition of coatings. Microhardness test was applied to evaluate the hardness of the coatings. Finally, the electrochemical behaviour of the Ni–Fe alloy coatings was studied by a polarisation test in 10?wt-% H2SO4 solution. Results revealed that current density and plating bath composition had a strong effect on the characteristics of coatings. As the iron content of alloys produced increased, their corrosion resistance improved with the best corrosion resistivity being achieved at a metal ion ratio of 0.5 and applied current density of 2.5?A?dm?2.  相似文献   

14.
《金属精饰学会汇刊》2013,91(5):268-274
Abstract

This paper reports on a study of electrodeposition and characterisation of cyclic multilayer coatings of Zn–Ni alloy from a sulphate bath. Cyclic multilayer alloy coatings were deposited on mild steel through the single bath technique by appropriate manipulation of cathode current densities. The thickness and composition of the individual layers of the CMA deposits were altered precisely and conveniently by cyclic modulation of the cathode current during electrodeposition. Multilayer deposits with sharp change in composition were developed using square current pulses, using thiamine hydrochloride and citric acid as additives. Laminar deposits with different configurations were produced and their corrosion behaviours were studied by AC and DC methods in 5%NaCl solution. It was observed that the corrosion resistance of the CMA coating increased progressively with the number of layers (up to certain optimal numbers) and then decreased. The decrease in corrosion resistance at high degree of layering was attributed to interlayer diffusion due to less relaxation time for redistribution of metal ions at cathode during deposition. The coating configurations have been optimised for peak performance of the coatings against corrosion. It was found that CMA coating developed at cyclic cathode current densities of 3·0/5·0 A dm?2 with 300 layers showed the lowest corrosion rate (0·112×10?2 mm/year) which is ~54 times better than that of monolithic Zn–Ni alloy, deposited from the same bath. The protection efficacy of CMA coatings is attributed to the difference in phase structure of the alloys in successive layers, deposited at different current densities, evidenced by X-ray diffraction analysis. The formation of multilayers and corrosion mechanism were examined by scanning electron microscopy.  相似文献   

15.
目的通过电沉积方法在镁锂合金表面制备具有高红外发射率以及高导电率的镀层,满足其在太空中散热以及电磁屏蔽的需要。方法通过前处理工艺(碱洗→酸洗→预钝化→化学镀镍磷→电镀铜)提高镁锂合金基体的耐蚀性能以及与后续镀层的结合力,并在此镁锂合金前处理工艺的条件下,电沉积多孔Zn-Ni合金镀层。通过热循环测试和电化学方法评价各镀层的电化学腐蚀行为和各镀层之间的结合力。结果各镀层之间的结合力良好,化学镀Ni-P层、电镀Cu层和多孔Zn-Ni层的耐蚀性能均优于镁锂合金基体,该组合镀层的协同作用可以有效地保护镁锂合金基体,提高其耐蚀性。结论最外层多孔Zn-Ni合金镀层主要由Ni2Zn11、NiO、NiS组成,其红外发射率为0.90,电阻率小于0.01 m?/cm。这表明多孔结构可以有效提高金属合金镀层的红外发射率,并保持合金镀层的高导电性。  相似文献   

16.
The possibility of increasing the corrosion resistance of automotive sheet steel by electrodepositing with Zn-Co alloy coatings was investigated. Process variables during electrodeposition such as current density, electrolyte flow rate, and pH were varied in order to examine their influence on the electroplating process. Cobalt contents varying from 0.2 to 7 wt% were easily obtained. The influence of these process parameters on the characteristics of the coating could be related to the hydroxide suppression mechanism for anomalous codeposition. The structure and the morphology of the coatings were determined using SEM and XRD analysis. Application properties important for coating systems used in the automotive industry, such as friction behavior, adhesion, and corrosion behavior, were investigated on coatings with varying cobalt content. The corrosion resistance of the Zn-Co alloy layers was found to be better than that of pure zinc coatings.  相似文献   

17.
目的 提高Zn-Ni合金镀层的耐微生物腐蚀性能。方法 在硫酸盐电镀液中添加梯度浓度的4,5-二氯-N-辛基-4-异噻唑啉-3-酮(DCOIT),利用恒电流沉积方法,在碳钢表面阴极电沉积获得DCOIT复合Zn-Ni合金镀层。通过电沉积电位监测与电流效率计算评价DCOIT对电沉积过程的影响,利用扫描电子显微镜、电子能谱、X射线晶体衍射等研究DCOIT对Zn-Ni复合镀层形貌、结构与Ni含量的影响,使用傅里叶红外吸收光谱和荧光显微观察法验证DCOIT的成功复合及复合镀层的抗菌性能,最后将DCOIT复合Zn-Ni合金镀层暴露于硫酸盐还原菌(SRB)中,监测菌液的pH与菌体浓度,同时计算镀层的腐蚀速率,并观察镀层的腐蚀形貌,评价复合镀层的耐SRB腐蚀性能。结果 DCOIT在电沉积过程中会吸附在沉积表面,造成沉积电位负移,并略微降低了电流效率。DCOIT的添加显著改变了复合镀层的形貌、结构与Ni含量,其Ni含量与DCOIT的添加量呈线性增长关系,导致其晶体结构转变。DCOIT以有效形式存在于复合Zn-Ni合金镀层中,并显示出抗菌性能,DCOIT添加量为2 mmol/L时,镀层中的复合量最高,抗菌性能最好。最后,DCOIT复合Zn-Ni合金镀层能有效抑制环境中SRB的生长与代谢,自身腐蚀速率减慢,耐蚀性能明显增强。结论 DCOIT能够以有效形式复合于Zn-Ni合金镀层内部,并有效提高了镀层的抗菌性能,使其获得增强的耐SRB腐蚀性能。  相似文献   

18.
Multilayer nanocomposite coatings of Zn-Ni-SiO2 were deposited galvanostatically on mild steel (MS) from Zn-Ni bath, having Zn+2 and Ni+2 ions and uniformly dispersed nano-SiO2 particles. The corrosion characteristics and properties of multilayered nanocomposite (MNC) coatings were evaluated by electrochemical polarization and impedance methods. Such deposition conditions as, bath composition, cyclic cathode current densities (CCCD’s) and number of layers were optimized for peak performance of coatings against corrosion. A significant improvement in the corrosion performance of MNC coatings was observed when a coating was changed from a monolayer to multilayer type. Corrosion rate (CR) of MNC coating decreased progressively with number of layers up to an optimal level, and then started increasing. The increase of CR at a higher degree of layering is attributed to diffusion of layers due to a very short deposition time, failing to give the enhanced corrosion protection. The formation of layers, inclusion of silica particle in MNC coating matrix were confirmed by SEM and XRD study. At optimal current densities, i.e. at 3.0–5.0 A/cm2, the Zn-Ni-SiO2 coating having 300 layers, represented as (Zn-Ni-SiO2)30/5.0/300 is found to be about 107 times more corrosion resistant than a monolayer Zn-Ni-SiO2 coating, developed from the same bath for the same time. The reasons responsible for the extended corrosion protection of MNC Zn-Ni-SiO2 coatings, compared to corresponding monolayer Zn-Ni and (Zn-Ni-SiO2) coatings were analyzed, and results were discussed.  相似文献   

19.
Zinc–nickel alloys were electrodeposited on steel from chloride bath by direct and pulse current. Some electric variables (average current density, pulse frequency, duty cycle) and some important bath conditions (ratio of Ni2+/Zn2+ in bath, temperature) on chemical compositions, current efficiency, microhardness and surface appearance of coatings were studied. At low current densities, transition from anomalous to normal co-deposition was observed for both direct and pulse current. Pulse current seems to increase brightness of the coating and to decrease the precipitation of zinc hydroxide at the cathode surface. In addition, applied pulse current increases the percentage of nickel in deposits. Pulse frequency and duty cycle had little effect on the chemical composition of deposits. The polarization curve of zinc–nickel deposition with pulse current is shifted to positive potentials in comparison with direct current curves. The temperature of the plating bath had a very strong effect on the composition of the deposits. This is primarily the result of intrinsically slow nickel kinetics. The hardness of Zn–Ni alloy coatings (approx. 220 VHN) was greater than the hardness of zinc coating (approx. 161 VHN). The hydroxide suppression mechanism for Zn–Ni co-deposition has been confirmed.  相似文献   

20.
The corrosion behaviour of electrodeposited zinc-nickel (Zn-Ni) alloy coatings has been studied in aqueous chloride environments. The corrosion rates of detached zinc alloys containing up to 25% Ni by weight were determined using linear polarisation techniques. The corrosion rate of Zn-Ni alloys was found to decrease with increasing Ni content over the compositional range studied. Galvanic corrosion measurements have indicated, however, that Zn-Ni alloy coatings become less sacrificial toward steel as the Ni content is increased. These results are used to interpret the corrosion behaviour of electroplated steel in a neutral salt fog environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号