首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The corrosion behaviour of copper under chloride-containing thin electrolyte layers (TEL) was investigated using electrochemical impedance spectroscopy (EIS), cathodic polarization, linear polarization, SEM/EDS and XRD. The results indicate that the copper corrosion rate increases as TEL thickness decreases during the initial stages. After 192 h of immersion, the corrosion rate of copper under TEL in this order: 300 > 402 > 199 > bulk solution > 101 μm. The corrosion behaviour is uniform under TEL, and pitting is the primary corrosion type in the bulk solution. A corrosion model of the behaviour of copper under chloride-containing TEL is proposed.  相似文献   

2.
Complex self‐assembled monolayers (SAMs) were prepared by modifying the adsorption of cysteine with dodecylacid (DAC) and with dodecylamine (DAM) on copper surfaces. Their protective effects against copper corrosion were investigated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) in 0.5 M HCl aqueous solution. Results show that SAMs suppress cathodic current densities and shift the corrosion potential toward more negative values. Two types of complex SAMs enhance the anticorrosion effect of cysteine SAMs. PM3 semi‐empirical quantum calculations were used to obtain the quantum chemical parameters. The complex SAMs formed from cysteine and DAM have the higher EHOMO level and the better protection effect.  相似文献   

3.
The electrochemical behavior of pure copper has been studied in aqueous environments using linear polarization and electrochemical impedance spectroscopy (EIS) techniques as a function of immersion time. The effect of pollutants (like chloride, sulfide and ammonium ions) on the nature of films formed on the copper surface has been studied. All the surfaces revealed the presence of a porous oxide layer. The corrosion resistance decreased with increasing amount of chloride ions. The addition of Na2S in the environments in the absence of any chloride species was beneficial for corrosion resistance. EIS data suggested that the capacitance of the films formed in chloride environments was higher. The surfaces obtained in presence of chloride ions were relatively rough and deeply attacked. The total impedance decreased after 432 h of immersion in solutions possessing chloride ions. The damaging role of chloride ions and the relatively less severe effect of sulfide ions were noted.  相似文献   

4.
In this paper, the properties of copper sulfide films formed both anodically and naturally in deaerated/anoxic aqueous sulfide and chloride solutions were investigated using a series of electrochemical and surface analytical techniques. A combination of cyclic voltammetric, corrosion potential (Ecorr), and cathodic stripping voltammetric experiments showed that the sulfide film growth kinetics and film morphologies were controlled by the supply of SH from the bulk solution to the copper surface. There was no passive barrier layer observed on the copper surface under either electrochemical or corrosion conditions. The film morphology was dependent on the type and concentration of anions (SH, Cl) present in the solution. Scanning electron microscopy on both surfaces and focused ion beam-cut cross-sections showed the growth of a thin, but porous, base layer of chalcocite (Cu2S) after short immersion periods (up to 2 hr) and the continuous growth of a much thicker crystalline outer deposit over longer immersion periods (≥36 hr), suggesting a solution species transport-based film formation process and the formation of an ineffective thin “barrier-type” layer on copper.  相似文献   

5.
The work addresses the influence of Mn and Mo additions on corrosion resistance of AISI 304 and 316 stainless steels in 30 wt.% H2SO4 at 25 and 50 °C. Corrosion mechanism was determined by gravimetric tests, DC polarization measurements and electrochemical impedance spectroscopy (EIS). The morphology and nature of the reaction products formed on the material surface were analysed by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). Reduction of temperature from 50 to 25 °C drastically decreased the corrosion rate of AISI 304 and 316 stainless steels in sulphuric acid solution. Mn additions did not affect significantly the general corrosion resistance due to its low ability to form insoluble compounds in acid medium. Meanwhile, the formation of molybdenum insoluble oxides enhanced the corrosion performance.  相似文献   

6.
The influence of temperature and flow rate on the characterization and mechanisms of corrosion product layers from CO2 corrosion of 13Cr stainless steel was carried out in simulated oilfield solution. Cyclic potentiodynamic polarization method as well as weight loss tests in autoclave were utilized to investigate pitting corrosion behavior at various temperatures. Weight loss tests were performed at 100 and 160 °C under dynamic and static flow conditions. At the same time, the significant pitting parameters such as E corr, E pit, E pp, ∆E, and I pass in cyclic polarization curves at various temperatures were analyzed and compared for revealing the pitting behavior of 13Cr stainless steel. The surface measurement techniques such as SEM, XRD, and XPS were used to detect the corrosion product layers. The results showed that both temperature and flow rate had significant effects on characterization of corrosion product layers or passive films formed on 13Cr stainless steel in CO2 corrosion system. At high temperature, lots of pits were formed at the localized corrosion areas of metal surfaces. Corrosion rates under the condition of 5 m/s were higher than those under the static condition regardless of the test temperatures.  相似文献   

7.
The formation and growth of calcareous deposits on 316L stainless steel and copper under cathodic polarization in artificial seawater were investigated by electrochemical tests and analytical techniques such as SEM, EDX and XRD. The deposits mineral compositions were related to the types of metallic materials and were different on each substrate. On 316L stainless steel at potentials less negative than the water reduction potential (−1100 mV/SCE), the deposits were composed of aragonite with low amounts of brucite; at the potentials more negative than the water reduction potentials, only of brucite. Around the water reduction potentials, the deposits were composed of both aragonite and brucite together. However the formation of brucite was noted before activating the water reduction processes. The results were moderately similar to that on mild steel and the type of deposited phases depended on potentials, at which the cathodic protection was carried out. The deposits formed on copper differed from those on 316L stainless steel and the types of deposited phases were independent from water reduction potential on copper (−1150 mV/SCE). Hence, the deposits were composed only of aragonite at all potential ranges. Due to the low current densities observed in chronoamperometric curves during cathodic polarization and in sufficient alkalinity, it seemed that the brucite could not deposit on this metallic substrate. The article is published in the original.  相似文献   

8.
X65碳钢在模拟油田采出水中的阴极保护研究   总被引:1,自引:0,他引:1  
采用极化曲线、恒电位阴极极化和失重法,并结合SEM,EDS和XRD分析产物的形貌、成分和结构,研究了不同保护电位下X65碳钢的保护效果和机制。结果表明:该环境中,自腐蚀条件下的X65碳钢发生严重腐蚀,失重速率大,坑蚀严重;-800~-1000 mV的保护电位对X65碳钢的腐蚀均有明显抑制效果;-800 mV阴极保护电位下X65碳钢表面无良好的钙质沉积层形成,-900 mV下表面能生成牢固致密的钙质沉积层,有效降低保护电流密度,-1000 mV下沉积层容易因析氢反应而鼓泡脱落;相比于海洋环境,X65碳钢在油田采出水中的析氢电位偏正,沉积层中不含Mg(OH)2。  相似文献   

9.
The background of several electrochemical techniques – recording of the corrosion potential Ecorr, electrochemical impedance spectroscopy (EIS), electrochemical noise analysis (ENA) and recording of potentiodynamic polarization curves – has been discussed and examples of the use of these techniques in studies of microbiologically influenced corrosion (MIC) and MIC inhibition have been presented. These examples range from the use of the polarization resistance Rp and the noise resistance Rn in corrosion monitoring in a sewer environment and a gas production field, respectively, to the application of EIS and ENA in the evaluation of the interaction of bacteria with protective coatings on steel exposed to natural seawater (NS). A more detailed analysis based on EIS and ENA of Corrosion protection of Al 2024, mild steel and brass in artificial seawater (AS) by bacteria such as B. subtilis, B. licheniformis, E. coli and Shewanella has been presented. Determination of the changes of Rp and Rn as well as Ecorr allows to propose appropriate mechanisms of MIC inhibition. These mechanisms have been confirmed in the case of S. algae by recording of anodic and cathodic potentiodynamic polarization curves after exposure to AS containing the bacteria for extended time periods.  相似文献   

10.
This paper discusses the validity and accuracy of the Tafel extrapolation method for determining corrosion rates of carbon steel in 1, 2 and 3 M HCl solutions open to air. Corrosion rates obtained from polarization experiments were compared with that of weight loss method. For analysing data obtained from polarization experiments electrochemical impedance spectroscopy (EIS) measurements were performed before polarization experiments. The results showed that formation of a corrosion product film and increasing the polarization resistance (Rp) of this film with time cause the corrosion rates obtained from Tafel extrapolation tend to be higher than corrosion rates obtained from weight loss test.  相似文献   

11.
The corrosion characteristics of copper microparticles and copper nanoparticles in distilled water were investigated in this paper. The Cu2+ transformations of copper microparticles and copper nanoparticles in distilled water were tested by using absorbance measurement, the structures of their corrosion products were determined by using XRD and TEM techniques. The results of absorbance measurement show that the corrosion characteristics of copper nanoparticles in distilled water are quite different from that of copper microparticles. The Cu2+ transformations ratio of copper microparticles increases slowly with the increasing of immersion time and levels off eventually, but the Cu2+ transformations ratio of copper nanoparticles increases sharply with the increasing of immersion time and gets to peak rapidly, and then decreases as the immersion time increases and levels off finally. The results of XRD present that they have different corrosion products, the corrosion products of copper microparticles in distilled water are Cu and CuO, but the nanoparticles are Cu, CuO, Cu(OH,Cl)2 · 2H2O and Cu2(CO3)(OH)2. All these differences owe to the size effect of copper particles.  相似文献   

12.
Cupronickel alloys are used as heat exchanger tube materials in nuclear power plant auxiliary coolant systems. In this work, the corrosion behaviour of cupronickel (70:30) alloy in permanganic acid medium was studied. Corrosion rate was found to follow logarithmic kinetics. Cyclic polarization studies showed that cupronickel did not undergo pitting in permanganic acid medium but uniform corrosion was observed. Presence of 0.43 mol/m3 chromate in 2.5 mol/m3 permanganic acid was found to decrease the corrosion rate of cupronickel by 50%. EIS and XPS studies revealed that the film formed on cupronickel was protective in nature and contained oxides of copper, nickel and manganese (mainly MnOOH). The composition of the film on cupronickel that had undergone chromate treatment also showed similar film except that it contained some chromium (III).  相似文献   

13.
Electrochemical techniques were used to characterize the corrosion behavior of four new binary alloys xSn-Ag (x = 26, 50, 70 and 96.5 wt%) alloys and their individual metal components in nitric acid solutions. The experimental data were collected by using open-circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Over the concentration range studied (0.075-4.5 M), each of the two corrosion parameters (Ecorr and icorr) shows a regular dependency on both the alloy composition and the solution concentration. In general, for all studied samples, especially pure Ag and those with lower Sn contents (26 and 50 wt%), increasing the acid concentration increases icorr, meanwhile causes a shift of the corresponding Ecorr towards more positive values. This is probably due to the increase in the effect of cathodic depolarizer as the nitric acid concentration is increased. EIS results at the free corrosion potential confirmed well this behavior, where at concentrations ?1.5 M the thickness of the surface film increases while its resistance decreases with increasing tin wt%, indicating formation of less protective thicker film. However, at higher concentrations all samples exhibit identical behavior.  相似文献   

14.
Corrosion of copper in seawater and its aerosols in a tropical island   总被引:1,自引:0,他引:1  
A complete characterization of copper corrosion behavior has been carried out under permanent immersion, water line, splash zone and at the atmosphere (near and far from the sea) at the tropical Cuban archipelago. No significant differences have been determined for corrosion of copper under complete immersion for test sites representative of Cuban archipelago. The maximum corrosion rate was observed on the line of water, related to the partial removing of the corrosion products layer due to water movement (waves) and a higher availability of oxygen. Patina composition was characterized using XRD, IR, EDS and SEM techniques. Paratacamite (Cu2(OH)3Cl) was the main component of the patina formed under complete immersion, on the line of water and in the splash zone. In poorly polluted atmospheric marine environments also atacamite (another structural modification of Cu2(OH)3Cl) was found. When environmental SO2 reaches a competitive level with the chloride aerosol the patina formed is a complex mixture of basic cupric chlorides (paratacamite and atacamite) and basic cupric sulfates, antlerite (Cu3(SO4)(OH)4) and brochantite (Cu4(SO4)(OH)6). Brochantite and basic cupric chlorides are detected at inland rural sites. The patina morphology reveals details about the local environment in which it is formed and shed light on its more or less protective role for the metal. The relatively large corrosion rate under complete immersion and on the line of water is related to the formation of a patina with poor adherence to the metal surface and to a porous layer of cuprite formed by relatively large octahedral crystals.  相似文献   

15.
This paper evaluates the inhibiting action of some anionic surfactants towards AA2198 corrosion in NaCl solutions; the effect of surfactant concentration in relation to chloride amount was determined.On separate electrodes, polarization curves were recorded after 1, 24 and 168 h immersion in the aggressive media, while EIS technique continuously monitored the alloy corrosion process.In general, these substances stifled both the cathodic and anodic processes and noticeably shifted the pitting potential (breakdown potential, EBR) in the positive direction. The most efficient compounds were N-lauroylsarcosine sodium salt and sodium dodecyl-benzenesulfonate, able to withstand the effects of 0.1 M Cl.  相似文献   

16.
This paper presents the investigation of diniconzole and triadimefon as chemical corrosion inhibitors for freshly polished copper in synthetic seawater (3.5% NaCl solution). Determination of weight loss, polarization curves, electrochemical impedance spectroscopy (EIS), and SEM, were performed to analyze the inhibiting performance of these compounds. Polarization curves show that they act as mixed-type inhibitors. EIS indicates that an adsorption film of the inhibitors is formed on copper surface. The highest values of inhibition efficiency are respectively, 99.2% and 97.3% at 100 mg/L concentration. Thermodynamic calculation suggests that chemisorptions between the compounds and copper are accordance with Langmuir adsorption isotherm.  相似文献   

17.
The alloying effect of Sb in a new low-alloy steel for the purpose of FGD materials was investigated by potentiodynamic polarization, linear polarization resistance measurement, electrochemical impedance spectroscopy (EIS) and weight loss measurements in an aggressive solution of 16.9 vol.% H2SO4 + 0.35 vol.% HCl (modified green death solution) at 60 °C, pH −0.3. All measurements confirmed the marked improvement in the corrosion behavior of the low-alloy steel via the addition of a small amount of Sb, particularly for the 0.10Sb steel. Pitting corrosion was detected by scanning electron microscopy (SEM) on the surface of blank steel and 0.05Sb steel, but not 0.10Sb steel, after weight loss measurements. X-ray photoelectron spectroscopy (XPS) analysis of the corroded surfaces after EIS and linear polarization measurements showed that the decrease in corrosion rates was due to the formation of a protective Sb2O5 oxide film on the surface of the Sb-containing steels. Moreover, the addition of 0.10% Sb stimulated the development of high corrosion inhibiting, Cu-containing compounds which further inhibited the anodic and cathodic reactions.  相似文献   

18.
Nanotubular oxide layer formation was achieved on biomedical grade Ti-13Nb-13Zr alloy using anodization technique in 1 M H3PO4 + 0.5 wt.% NaF. The as-formed and heat treated nanotubes were characterized using SEM, XRD and TEM. Corrosion behaviour of the nanotubular alloy was investigated employing potentiodynamic and potentiostatic polarization. The alloy after nanotubular oxide layer formation exhibited significantly higher corrosion current density than the bare alloy. The lower corrosion resistance of the nanotubular alloy was suggested to be associated with the distinctly separated barrier oxide/concave shaped tube bottom interface. A heat treatment at 150 °C appreciably enhanced the corrosion resistance property.  相似文献   

19.
Corrosion resistance of a highly alloyed austenitic stainless steel (Sanicro28) in 50 wt.% H3PO4 industrial medium containing impurities at temperatures from 20 °C to 80 °C was evaluated after different immersion times. Electrochemical measurements (polarization curves, OCP, EIS and Mott–Schottky) demonstrated that Sanicro28 passivates spontaneously. From impedance results, film thicknesses of about 1.6–4.5 nm were obtained. At low temperature, the resistance to corrosion increases with immersion time due to the formation of iron phosphate and/or chromium phosphate. At higher temperature, phosphate formed a porous polyphosphate film identified by μ-Raman. No pits are initiated on surface whatever the temperature.  相似文献   

20.
溶解氧对X80管线钢在NS4溶液中腐蚀行为的影响   总被引:3,自引:0,他引:3  
采用动电位极化和交流阻抗技术研究了NS4溶液中的溶解氧对X80管线钢在该溶液中耐蚀性的影响,通过SEM、XRD等对X80管线钢的腐蚀形貌和腐蚀产物进行了分析.结果表明, 随着NS4溶液中溶解氧含量的减少,X80钢的腐蚀电位升高,腐蚀电流密度降低,腐蚀产物的致密性逐渐提高,X80钢的耐蚀性增加;氧含量较高时,腐蚀产物表面高低不平,表面存在大量裂缝、孔洞等缺陷,表面致密性较差,氧含量减少后,腐蚀产物平整致密;随着溶解氧含量的不同,腐蚀后生成了不同的腐蚀产物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号