首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the microstructure of the as-deposited cathodic arc evaporated Ti1-xAlxN coatings and, in particular, the influence of the intrinsic lattice strains on their thermal stability were investigated by in-situ synchrotron high temperature glancing angle X-ray diffraction (HT-GAXRD) experiments up to 850 °C. The microstructure of the as-deposited coatings was adjusted by the bias voltage (UB = −40 V, UB = −80 V and UB = −120 V) and by the [Al]/([Ti] + [Al]) ratio (0.4, 0.5 and 0.6) of the used Ti–Al targets. The microstructure evolution during annealing was described in terms of the phase composition of the coatings, the aluminium content, aluminium distribution and residual lattice strains in fcc-(Ti,Al)N. Independent of the deposition parameters ([Al]/([Ti] + [Al]) ratio and bias voltage), all coatings contained a mixture of fcc-(Ti,Al)N, fcc-AlN and w-AlN after annealing at 850 °C. The [Al]/([Ti] + [Al]) ratio was found to control the amount of fcc-(Ti,Al)N, whereas the bias voltage was mainly responsible for the relative amount of fcc-AlN and w-AlN. Finally, the interplay between lattice strains and the kinetics of the spinodal decomposition of fcc-(Ti,Al)N was illustrated.  相似文献   

2.
The aim of this work is to illuminate the influence of two widely applied target types, i.e. TiAl compound targets produced by powder metallurgy and mosaic TiAl targets, on the sputter deposition process as well as on the structure and properties of the obtained coatings. After development of a sputter process for the compound targets by optimization of cathode power and nitrogen partial pressure, this process was compared to the commercially applied mosaic target process by taking into account the sputter yields of Ti and Al and the respective deposition rates. The deposition rate achieved with the compound targets was ~ 44% higher than that obtained for the mosaic targets. The Al content in the coatings deposited from the compound targets was slightly higher and the domain size of the formed cubic Ti1 − xAlxN solid solution considerably larger than for the coatings deposited from the mosaic targets. The coatings grown from the compound targets showed, in contrast to those synthesized from the mosaic targets, tensile stresses. While the hardness of the coatings sputtered from the compound targets was slightly below that of the coatings synthesized from the mosaic targets, both their friction and wear behavior were slightly improved. In summary, it could be shown that using compound TiAl targets manufactured by powder metallurgy, Ti1 − xAlxN coatings with mechanical and tribological properties comparable to those grown from commercially applied mosaic targets can be deposited at significantly higher growth rates.  相似文献   

3.
Graded and multilayered AlxTi1−xN nanocrystalline coatings were synthesized by using cathodic-arc evaporation (CAE) process. Ti33Al67 and Ti50Al50 alloy cathodes were used for the deposition of AlxTi1−xN nanocrystalline coatings with different Al/(Ti+Al) ratios. Optical emission spectra of the plasma species including atomic and ionized Ti, atomic Al, excited and ionized nitrogen (N2 and N2+) revealed that the excitation, ionization and charge transfer reactions of the Al-Ti-N plasma occurred during the AlxTi1−xN coating process. A preferred (111) orientation was shown in the Al0.67Ti0.33N with high Al/(Ti+Al) atomic content ratio (0.63) and small grain size (29 nm). The graded Al0.67Ti0.33N/TiN possessed the highest hardness of Hv25 g 3850 ± 180. However, the multilayered Al0.67Ti0.33N/TiN coating supported a longer tool life with lower residual stress. It has been found that the wear performance and mechanical properties of the films were correlated with the Al/(Ti+Al) content ratio and multilayered structure.  相似文献   

4.
The phase evolution, crystal structure and dielectric properties of (1 − x)Nd(Zn0.5Ti0.5)O3 + xBi(Zn0.5Ti0.5)O3 compound ceramics (0 ≤ x ≤ 1.0, abbreviated as (1 − x)NZT-xBZT hereafter) were investigated. A pure perovskite phase was formed in the composition range of 0 ≤ x ≤ 0.05. The B-site Zn2+/Ti4+ 1:1 long range ordering (LRO) structure was detected by both XRD and Raman spectra in x ≤ 0.05 samples. However, this LRO structure became gradually degraded with an increase in x. The dielectric behaviors of the compound ceramic at various frequencies were investigated and correlated to its chemical composition and crystal structure. A gradually compensated τf value was obtained in (1 − x)NZT-xBZT microwave dielectrics at x = 0.03, which was mainly due to the dilution of dielectric constant in terms of Claussius-Mossotti differential equation.  相似文献   

5.
Al2O3 and Ti-6Al-4V alloy were brazed using Cu + TiB2 composite filler, which manufactured by mechanical milling of Cu and TiB2 powders. Typical interface microstructure of joint was Al2O3/Ti4(Cu,Al)2O/Ti2Cu + Ti3Al + Ti2(Cu,Al)/Ti2(Cu,Al) + AlCu2Ti/Ti2Cu + AlCu2Ti + Ti3Al + Ti2(Cu,Al) + TiB/Ti(s.s) + Ti2Cu/Ti-6Al-4V alloy. Based on temperature- and time-dependent compositional change, the formation of intermetallics in joint was basically divided into four stages: formation of interfacial Ti4(Cu,Al)2O in Al2O3 side, formation of Ti2Cu, Ti3Al, TiB, Ti2Cu, and AlCu2Ti in layers II and IV, formation of Ti2(Cu,Al) and AlCu2Ti in layer III, formation of Ti + Ti2Cu hypereutectoid organization adjacent to Ti-6Al-4V alloy. TiB in situ synthesized in joint not only acted as low thermal expansion coefficient reinforcement to improve the mechanical properties at room temperature, but also as skeleton ceramic of joint to increase high temperature mechanical properties of Al2O3/Ti-6Al-4V alloy joint increasing. When the joint containing 30 vol.% TiB brazed at 930 °C and 10 min of holding time, the maximum room temperature shear strength of joint was 96.76 MPa, and the high temperature shear strength of joint was 115.16 MPa at 800 °C.  相似文献   

6.
A novel technique to form Ti(C, N) on titanium, named as plasma electrolytic carbonitriding (PEC/N) on cathode was successful used to prepare TiCxN1 − x coating. The structure, composition and morphology of the coating were characterized by XRD, XPS and SEM, respectively. The results indicated that TiC0.3N0.7 as a new species appears on the surface of the titanium plate, and the thickness of the coating with porous surface morphology increases with the treated time. The blood compatibility of the TiC0.3N0.7 coating was evaluated by haemolysis ratios, dynamic blood clotting test, plasma recalcification time and platelet adhesion. The results indicated that the blood compatibility of the plasma-treated titanium with TiCxN1 − x coating is significantly improved as compared to the original titanium. Additionally, the results derived from measurements of hardness and corrosion indicated that the coating has excellent mechanical and corrosion-resistant properties.  相似文献   

7.
Multi-element (AlCrTaTiZr)N coatings are deposited onto Si and cemented carbide substrates by reactive RF magnetron sputtering in an Ar + N2 mixture. The influence of substrate bias voltage, ranging from 0 to − 200 V, on the microstructural, mechanical and tribological properties of these nitride coatings is studied. A reduction in concentration of N and Al is observed with increasing substrate biases. The (AlCrTaTiZr)N coatings show the face-centered-cubic crystal structure (B1-NaCl type). The use of substrate bias changes the microstructure of the (AlCrTaTiZr)N coating from the columns with microvoids in boundaries to the dense and less identified columns. The compressive macrostress increases from − 0.9 GPa to − 3.6 GPa with an increase of substrate bias. The hardness and adhesion increase to peak values of 36.9 GPa and 60.7 N at the bias voltage of − 150 V, respectively. The tribological properties of the (AlCrTaTiZr)N coatings against 100Cr6 steel balls are evaluated by a ball-on-disc tribometer with a 10 N applied load. With an increase of substrate bias, the wear rate reduces while the friction coefficient almost keeps constant at 0.75. The lowest wear rate of 3.65 × 10− 6 mm3/Nm is obtained for the (AlCrTaTiZr)N coating deposited at the bias voltage of − 150 V.  相似文献   

8.
Ti1 − xAlxN is a well established material for cutting tool applications exhibiting a high hardness and an excellent oxidation resistance. A main route for increasing the performance of Ti1 − xAlxN is the incorporation of further elements. Therefore the main objective of this work is to improve the properties and wear resistance of aluminum-rich CVD-TiAlN coatings by incorporating carbon. A new Low Pressure CVD process was employed for the deposition of a very aluminum-rich TiAlCN layers. The process works with a gas mixture of TiCl4, AlCl3, NH3, H2, N2, Ar and ethylene as carbon source. In this work microstructure, composition, properties and cutting performance of CVD-TiAlCN coatings were investigated.Hard aluminum-rich TiAlCN coatings were obtained at 800 °C and 850 °C consisting of a composite of fcc-Ti1 − xAlxN and minor phases of TiN, h-AlN and amorphous carbon. WDX analysis indicates only a low carbon content < 2 at.%. Lattice constant calculations suggest that carbon atoms should not be incorporated in the Ti1 − xAlxN lattice. From TEM analysis and Raman spectroscopy it is evident that carbon is mainly located at the grain boundaries as a-C phase. Therefore these fcc-Ti1 − xAlxN(C) coatings with low carbon content are rather a composite of fcc-Ti1 − xAlxN and an amorphous carbon phase (a-C). At 900 °C the metastable fcc-Ti1 − xAlxN nearly disappears and co-deposition of TiN and h-AlN occurs. The layers deposited at 800 °C and 850 °C possess a high hardness around 3000 HV and compressive stress. CVD-TiAlCN coatings prepared at 850 °C shows also an amazing thermal stability under high vacuum conditions up to 1200 °C. Aluminum-rich composites fcc-Ti1 − xAlxN/a-C with x > 0.8 exhibit a superior cutting performance in different milling tests.  相似文献   

9.
The phase transition behavior and its effect on thermal stability of the piezoelectric properties of the (1 − x)[0.65PbMg1/3Nb2/3O3-0.35PbTiO3]-xBiZn1/2Ti1/2O3 ceramics with 0 ≤ x ≤ 0.06 were investigated. The phase transition from the monoclinic to tetragonal phase was determined by the dielectric constant and elastic constant measurements. The temperature independent piezoelectric response with −d31 = 188 pC/N was obtained from 175 to 337 K for the composition with x = 0.02. The enhanced thermal stability of piezoelectric response was achieved by shifting the monoclinic-tetragonal phase transition to the lower temperature.  相似文献   

10.
Thin films of Ti1−xAlxN nitrides were prepared over a large range of composition (0 ≤ x < 1) on Si substrates using nitrogen reactive magnetron sputtering from composite metallic targets. Ti K-edge X-ray Absorption Spectroscopy experiments were carried for a better understanding of the local structure. The evolution of the intensity of Ti K-edge pre-edge peak gives evidence of the incorporation of Ti in hexagonal lattice of AlN for Al-rich films and in cubic lattice of TiN for Ti-rich films. An attempt to determine their atomic structure by combining X-ray diffraction and Ti K-edge Extended X-ray Absorption Fine Structure is presented. The evolution of the nearest neighbour and next-nearest neighbour distances depending on the composition is presented and discussed together the cubic and hexagonal lattice parameters. A possible contribution of amorphous nitrides is suggested.  相似文献   

11.
SiC颗粒增强铝基复合材料基材上制备(Ti,Al)N涂层的研究   总被引:1,自引:0,他引:1  
利用电弧离子镀技术在SiCp/2024Al基体上制备(Ti,Al)N涂层.研究了偏压对涂层的相组成、晶格常数和成分的影响及不同过渡层对涂层与基体结合性能的影响.结果表明,在较小偏压下,(Ti,Al)N涂层呈(111)择优取向;偏压在-150V时,涂层无择优取向;但随偏压继续升高,出现(200)和(220)择优取向.在添加Ti过渡层时,涂层与基体形成致密均匀的良好结合.同时通过设计梯度涂层,获得了厚度达105um的无裂纹(Ti,Al)N涂层.  相似文献   

12.
The effect of the composition on the electrical properties of BaBi1−xSbxO3 (0 ≤ x ≤ 0.5) negative temperature coefficient (NTC) thermistors was studied. Major phases present in the sintered bodies of BaBi1−xSbxO3 (0 < x < 0.5) ceramics were BaBi0.5Sb0.5O3 compounds with a rhombohedral structure and BaBiO3 compounds with a monoclinal structure. Most pores were located in the grains of BaBiO3 and BaBi0.5Sb0.5O3 ceramics. It was apparent that the ρ25 and B25/85 constant of the thermistors increased with increasing Sb content.  相似文献   

13.
Nanocrystalline Ca1−xSmxMnO3 (0 ≤ x ≤ 0.4) manganites were prepared by a soft chemical method (Pechini method) followed by auto-combustion and sintering in air at 1073 or 1473 K. Single-phase powders with general composition Ca1−xSmxMnO3 were obtained after 18 h annealing. The particle and grain sizes of the substituted Sm-manganites did not exhibit variation with samarium content, but increase with increasing the sintering temperature. All manganites show two active IR vibrational modes near 400 and 600 cm−1 characteristic of the BO6 octahedron vibrations.For the samples sintered at Ts = 1473 K, the partial substitution of calcium by samarium in the CaMnO3 phase induces a marked decrease in the electrical resistivity, in the temperature range of 300-900 K, and at the same time a metal-to-insulator transition occurs; for Ts = 1073 K all the samples present semiconductor behaviour. With the increase of the annealing temperature the grain size increases and a metal-semiconductor transition appears. The results can be ascribed to the Mn4+/Mn3+ ratio and particle grain size. The effects of particle size on the electrical properties can be attributed to the domain status, changes in the Mn-O-Mn bond angle and Mn-O bond length.  相似文献   

14.
Calcium copper titanate, CaCu3Ti4O12 (CCTO), thin film has been deposited by the soft chemical method on Pt/Ti/SiO2/Si (1 0 0) substrates at 700 °C for 2 h. The peaks were indexed as cubic phase belonging to the Im−3 space group. The film exhibited a duplex microstructure consisting of large grains of 130 nm in length and regions of fine grains (less than 80 nm). The CCTO film capacitor showed a dielectric loss of 0.031 and a dielectric permittivity of 1020 at 1 MHz. The J-V behavior is completely symmetrical, regardless of whether the conduction is limited by interfacial barriers or by bulk-like mechanisms. Based on impedance analyses, the equivalent circuit of CCTO film consisting of a resistor connected in series with two resistor-capacitor (RC) elements.  相似文献   

15.
The crystal structure, microstructure, dielectric and ferroelectric properties of (1 − x)Na0.5Bi0.5TiO3-xBaTiO3 ceramics with x = 0, 0.03, 0.05, 0.07 and 0.1 are investigated. A structural variation according to the system composition was investigated by X-ray diffraction (XRD) analyses. The results revealed that the synthesis temperature for pure perovskite phase powder prepared by the present sol-gel process is much lower (800 °C), and a rhombohedral-tetragonal morphotropic phase boundary (MPB) is found for x = 0.07 composition which showing the highest remanent polarization value and the smallest coercive field. The optimum dielectric and piezoelectric properties were found with the 0.93Na0.5Bi0.5TiO3-0.07BaTiO3 composition. The piezoelectric constant d33 is 120 pC/N and good polarization behaviour was observed with remanent polarization (Pr) of 12.18 pC/cm2, coercive field (Ec) of 2.11 kV/mm, and enhanced dielectric properties ?r > 1500 at room temperature. The 0.93Na0.5Bi0.5TiO3-0.07BaTiO3-based ceramic is a promising lead-free piezoelectric candidate for applications in different devices.  相似文献   

16.
Structure-property relations of arc-evaporated Al-Cr-Si-N coatings   总被引:1,自引:0,他引:1  
The addition of silicon to the widely used aluminum-containing transition metal nitrides is promising for the synthesis of hard and thermally stable films with good oxidation resistance. For that reason, Al-Cr-Si-N coatings were deposited by reactive cathodic arc-evaporation under industrial conditions from Al70Cr30 − xSix (x = 0, 1, 2, 5 at.%) targets at substrate bias voltages ranging from − 40 V to − 150 V. The structure of the well adherent coatings was investigated by X-ray diffraction and Raman spectroscopy, which indicated at higher Al/Cr ratio > 1.9 an increased tendency of the metastable face-centered cubic solid solution of AlN in CrN to separate into a cubic-hexagonal phase mixture. At higher bias voltages, this effect is gradually inverted and the single cubic phase can be retained. X-ray photoelectron spectroscopy revealed dominant Si-N bonds suggesting either a substitutional solid solution or a separate Si-N phase. Mechanical properties, i.e. hardness and elastic modulus, measured by indentation together with stress evolution demonstrate the beneficial effect of the conservation of the metastable cubic phase.  相似文献   

17.
Titanium aluminides coatings were in-situ synthesized on a pure Ti substrate with a preplaced Al powder layer by laser surface alloying. The friction and wear properties of the titanium aluminides coatings at different normal loads and sliding speeds were investigated. It was found that the hardness of the titanium aluminides coatings was in the following order: Ti3Al coating > TiAl coating > TiAl3 coating. Friction and wear tests revealed that, at a given sliding speed of 0.10 m/s, the wear volume of pure Ti and the titanium aluminum coatings all increased with increasing normal load. At a given normal load of 2 N, for pure Ti, its wear volume increased with increasing sliding speed; for the titanium aluminides coatings, the wear volume of Ti3Al coating and TiAl coating first increased and then decreased, while the wear volume of TiAl3 coating first decreased and then increased with increasing sliding speed. In addition, the friction coefficients of pure Ti and the titanium aluminides coating decreased drastically with increasing sliding speed. Under the same dry sliding test conditions, the wear resistance of the titanium aluminium coatings was in the following order: Ti3Al coating > TiAl coating > TiAl3 coating.  相似文献   

18.
A novel laboratory technique, nano-impact testing, has been used to test Ti1−xAlxN (x = 0.5 and 0.67) PVD coated WC-Co inserts at 25-500 °C. Cutting tool life was studied under conditions of face milling of the structural AISI 1040 steel; the end milling of hardened 4340 steel (HRC 40) and TiAl6V4 alloy. A correlation was found between the results of the rapid nano-impact test and milling tests. When x = 0.67 improved resistance to fracture was found during milling operations and also in the nano-impact test of this coating compared to when x = 0.50. The coating protects the cutting tool surface against the chipping that is typical for cutting operations with intensive adhesive interaction with workpiece materials such as machining of Ti-based alloys. The results give encouragement that the elevated temperature nano-impact test can be used to predict the wear and fracture resistance of hard coatings during milling operations. At 500 °C nanoindentation shows there is a lower H/Er ratio for the PVD coatings compared to room temperature, consistent with reduced fracture observed at this temperature in the nano-impact test.  相似文献   

19.
Lead-free (1 − x − y)Bi0.5Na0.5TiO3-xBaTiO3-yBi0.5Ag0.5TiO3 (BNT-BT-BAT-x/y, x = 0-0.10, y = 0-0.075) piezoelectric ceramics were synthesized by conventional oxide-mixed method. The microstructure, ferroelectric, and piezoelectric properties of the ceramics were investigated. Results show that a morphotropic phase boundary (MPB) between rhombohedral and tetragonal phases of BNT-BT-BAT-x/0.04 ceramics is formed at x = 0.06-0.08. The addition of BAT has no obvious change on the crystal structure of BNT-BT ceramics while it causes the grain size of the ceramics to become more homogenous. Near the MPB, the ceramics with x = 0.06 and y = 0.05-0.06 possess optimum electrical properties: Pr ∼ 42.5 μC/cm2, Ec ∼ 32.0 kV/cm, d33 ∼ 172 pC/N, kp ∼ 32.6%, and kt ∼ 52.6%. The temperature dependences of kp and polarization versus electric hysteresis loops reveal that the depolarization temperature (Td) of BNT-BT-BAT-0.06/y ceramics decreases with increasing y. In addition, the polar and non-polar phases may coexist in the BNT-BT-BAT-x/y ceramics above Td.  相似文献   

20.
The paper will present the state-of-art in the process, structure and properties of nanostructured multifunctional tribological coatings used in different industrial applications that require high hardness, toughness, wear resistance and thermal stability. The optimization of these coating systems by means of tailoring the structure (graded, superlattice and nanocomposite systems), composition optimization, and energetic ion bombardment from substrate bias voltage control to provide improved mechanical and tribological properties will be assessed for a range of coating systems, including nanocrystalline graded Cr1−xAlxN coatings, superlattice CrN/AlN coatings and nanocomposite Cr–B–N and TiC/a-C coatings. The results showed that the superlattice CrN/AlN coating exhibited a super hardness of 45 GPa when the bilayer period Λ was about 3.0 nm. Improved toughness and wear resistance have been achieved in the CrN/AlN multilayer and graded CrAlN coatings as compared to the homogeneous CrAlN coating. For the TiC/a-C coatings, increasing the substrate bias increased the hardness of TiC/a-C coatings up to 34 GPa (at −150 V) but also led to a decrease in the coating toughness and wear resistance. The TiC/a-C coating deposited at a −50 V bias voltage exhibited an optimized high hardness of 28 GPa, a low coefficient of friction of 0.19 and a wear rate of 2.37 × 10−7 mm3 N−1 m−1. The Cr–B–N coating system consists of nanocrystalline CrB2 embedded in an amorphous BN phase when the N content is low. With an increase in the N content, a decrease in the CrB2 phase and an increase in the amorphous BN phase were identified. The resulting structure changes led to both decreases in the hardness and wear resistance of Cr–B–N coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号