首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ultrasonic interferometry was used to measure elastic-wave velocities and moduli in six Na2O-TiO2-SiO2 glasses; three glasses contained 20 mol% TiO2 and three 25 mol% TiO2. The elastic moduli and their pressure derivatives varied systematically with the SiO2/Na2O molar ratio of the glasses. In the group of glasses which contained 20 mol% TiO2, dK/dP ( K =bulk modulus) decreased linearly from 4.85 to 2.59 as the SiO2/Na2O ratio increased; in the other group, dK/dP decreased from 4.00 to 3.05. Similarly, dμ/dP (μ=shear modulus) decreased with the SiO2/Na2O ratio, but somewhat non-linearly. The extrinsic and intrinsic contributions to the temperature dependencies of the elastic moduli are evaluated in light of the measured pressure dependencies of these moduli.  相似文献   

2.
The compositional range for glass formation below 1600°C in the Sm2O3─Al2O3─SiO2 system is (9–25)Sm2O3─(10–35)Al2O3─(40–75)SiO2 (mol%). Selected properties of the Sm2O3─Al2O3─SiO2 (SmAS) glasses were evaluated as a function of composition. The density, refractive index, microhardness, and thermal expansion coefficient increased as the Sm2O3 content increased from 9 to 25 mol%, the values exceeding those for fused silica. The dissolution rate in 1 N HCl and in deionized water increased with increasing Sm2O3 content and with increasing temperature to 70°C. The transformation temperature ( T g ) and dilatometric softening temperature ( T d ) of the SmAS glasses exceeded 800° and 850°C, respectively.  相似文献   

3.
The fracture toughnesses of fused SiO2 and float glass were measured at high temperatures. In both glasses, low-temperature regions of elastic fracture were identified and correlated with the elastic moduli and their temperature dependence. A viscous flow contribution to the fracture toughness was identified in the fused SiO2 at T >800°C. Similar indications of viscous flow were also noted in the float glass, although at much lower temperatures.  相似文献   

4.
A series of La2O3–HfO2–SiO2 glasses, approximately along the join 0.73SiO2–0.27( x HfO2–(1− x )La2O3), 0< x <0.3), was prepared using containerless processing techniques (aerodynamic levitation combined with laser heating in oxygen). The enthalpy of formation and enthalpy of vitrification at 25°C were obtained from drop solution calorimetry of these glasses and appropriate crystalline compounds in a molten lead borate (2PbO–B2O3) solvent at 702°C. The enthalpy of formation from crystalline oxides was exothermic and became less exothermic with increasing HfO2 content. Heat contents were measured by transposed temperature drop calorimetry and depended linearly on the HfO2 content. Differential scanning calorimetry showed that both the onset glass transition and the onset crystallization temperature of these glasses increased with increasing HfO2 content. Upon slow cooling in air, the glasses crystallized to a mixture of baddeleyite, cristobalite, lanthanum disilicate, and hafnon.  相似文献   

5.
Clear glasses which included droplet-like microphases were produced when SiO2 in sodium borosilicate glasses was replaced by Sc2O3. Phase separation and/or crystallization occurred after heat treatment. The porous skeleton of leached glasses consisted of hexagonal ScBO3. The specific surface areas and pore radii are comparable to those of porous SiO2 glass. The sintering temperature of porous Sc-based material is higher than that of porous SiO2. Alumina contamination influenced the structure of the porous material.  相似文献   

6.
Transparent glass-ceramics, in which the major phase was NaNbO3, were obtained by heat treatment of glasses in the Na2O-Nb2O5-SiO2 system. The structure of the glass and the changes occurring during crystallization as a function of temperature and heating rate were examined by X-ray diffraction, transmission and replication electron microscopy, density, and other measurements. On heating, a rather abrupt formation of uniformly dispersed particles was observed. In the early stages of crystallization, these particles contained NaNbO3 as loose, radially grown dendrites of identical crystal orientation which became dense during later stages of crystallization. The particle sizes ranged from 200 to 10,000 A, depending on the SiO2 content of the glass. Transparency of the crystallized material was dependent on the particle size rather than on the amount of NaNbO3 formed. The temperature at which crystallization occurred increased with the heating rate whereas the viscosity at crystallization decreased. For a given value of the rate of crystal formation per °C of temperature increase, the product (viscosity)n× (heating rate) was constant. The nucleation and growth phenomena which occurred in these glasses was attributed to microheterogeneities of higher Nb2O5 content which formed part of the glass structure.  相似文献   

7.
The thermal conductivity of Li2O·Al2O3· n SiO2 glass-ceramics is studied for n = 4, 6, 8, 10 between 5 and 100 K. A monotonic increase in conductivity is observed for all samples. This behavior is different from that of glassy counterparts which exhibit a plateau in thermal conductivity between 10 and 20 K. It is also observed that while the conductivity of glass-ceramics is lower than that of glasses at low temperatures, the situation is reversed at higher temperatures. A crossover occurs around 40 K for all studied samples. The glass-ceramic behavior is interpreted in the light of the acoustic mismatch theory of Little. At low temperatures, the thermal boundary resistance that exists at the crystalline-amorphous mismatch is high and the thermal conductivity is low. At higher temperatures, the boundary resistance is very small and the high conductivity is mainly due to the crystalline region within the amorphous structure.  相似文献   

8.
Flexural strengths, elastic moduli, and fracture energies of 3BaO·5SiO2 glass-ceramics with a variety of microstructures were determined. Flexural strength depends on the size of spherulites in the microstructure and on the amount of glassy phase remaining in the material. Higher strengths were achieved in glass-ceramics containing a tabular, rather than a spherulitic, microstructure. The addition of small quantities of Na2O to the original glass promoted production of the higher-strength tabular morphology after only 10 min of crystallization at 775°C. The increase in the strength of the glass-ceramics over that of the glass resulted from an increase in the fracture energy and elastic modulus of the material. The microstructure had little effect on the size of the flaws introduced by abrasion.  相似文献   

9.
The effect of zirconium ions on glass structure and proton conductivity was investigated for sol-gel-derived P2O5–SiO2 glasses. Porous glasses were prepared through hydrolysis of PO(OCH3)3, Zr(OC4H9)4, and Si(OC2H5)4. Chemical bonding of the P5+ ions was characterized using 31P-NMR spectra. The phosphorous ions, occurring as PO(OH)3 in the ZrO2-free glass, were polymerized with one or two bridging oxygen ions per PO4 unit with increased ZrO2 content. The chemical stability of these glasses was increased significantly on the addition of ZrO2, but the conductivity gradually decreased from 26 to 12 mS/cm at room temperature for 10P2O5·7ZrO2·83SiO2 glass. A fuel cell was constructed using 10P2O5·5ZrO2·85SiO2 glass as the electrolyte; a power of ∼4.5 mW/cm2 was attained.  相似文献   

10.
Clear glasses were produced when SiO2 in sodium borosilicate glasses was replaced by Ga2O3. Phase separation and/or crystallization occurred after heat treatment. The porous skeleton of leached material consisted of monoclinic β-Ga2O3. The specific surface areas and pore radii are comparable to those of porous SiO2. Alumina contamination influenced the structure of the porous product.  相似文献   

11.
The transformation kinetics and microstructures of glass-ceramics, which deviate from those of a stoichiometric cordierite compound, are greatly dependent on the compositions of the starting glasses. Compositions richer in (MgO,SiO2) than the stoichiometric cordierite compound suppress the formation of μ-cordierite, yet enhance the crystallization of α-cordierite, resulting in a higher content of α-cordierite. In contrast, compositions richer in Al2O3 than the stoichiometric cordierite compound have no effect on the crystallization of α-cordierite. Thus, most of the glass crystallizes to μ-cordierite in the initial stage, followed by the slow transformation of μ-cordierite into an α-phase, which results in a low content of α-cordierite.  相似文献   

12.
Thermally crystallized glasses of compositions (Li2,O2, MgO).Al2O3.nSiO2 were studied by X-ray powder diffraction methods. High-quartz solid solution phases developed at relatively low temperatures and, for n 3.5, transformed at higher temperatures to keatite solid solution phases. Associated phases, if present, were Mg spinel and/or cordierite, or a few other trace phases. The a crystallographic axis (a0) of high-quartz solid solutions decreased with increase of MgO and/or SiO2. The c crystallographic axis (c0) decreased with increasing MgO; it also decreased with increasing SiO2, but only when MgO content was low. X-ray diffraction photographs of single crystals of high-quartz solid solutions of compositions LiaO.Al2O3.nSiO3 demonstrated that the maintenance of a basic high-quartz structure is the basis of the solid solution relation. Three modifications of the high-quartz structure were recognized in the Li2O-Al2O3−SiO3 system. These modifications were based on the occurrence and positions of superlattice reflections. The high-quartz solid solution from Li2O Al2O3−2SiO2, showing streaky reflections in its precession photographs, suggested a defective structure. The term "high-quartz solid solution," with or without additional prefixes specifying the compositional series and modification, was considered the preferred nomenclature for these solid solution phases.  相似文献   

13.
Crystallization of a series of ZnO-P2O5 based glasses was investigated. ZnO-P2O5-CaO glasses could be converted most readily to glass-ceramics and crystallization of these led to formation of alpha-Zn2P2O7, alpha-CaZn2(PO4)2, and ß-CaZn2(PO4)2 phases. A further phase has been tentatively identified as monoclinic (Zn,Ca)2P2O7. The most promising glass-ceramic composition Z15 (59.4ZnO·33P2O5·6.6CaO·1SiO2) crystallized to alpha-Zn2P2O7 and ß-CaZn2(PO4)2, the latter phase being stabilized by the presence of SiO2 which also encouraged volume nucleation giving a fine-scale (submicrometer) microstructure.  相似文献   

14.
Quadrupole interactions of 11B and 27Al in SiO2-B2O3-Al2O3-R2O glass systems were investigated to determine the structure of these glasses, which should be amenable to chemical strengthening. The ratio of BO4 units to BO3 units approached unity as the R2O/Al2O3 ratio for compounds having fixed B2O3 contents approached unity. Nuclear quadrupole coupling constants ( e2Qq/h =2.73 to 2.93 MHz) were measured for the NMR spectra of 11B triangles. The line shapes of 27Al spectra varied with chemical composition, but a few glasses exhibited 27Al line shapes similar to those of the AlO4 triclusters in SiO2-Al2O3-Na2O glasses. Compositional trends in the formation of BO4 and AlO4 were deduced from the NMR spectra.  相似文献   

15.
Enthalpies of drop solution in molten 2PbO-B2O3 at 1078 K were measured for glasses along the 2YAlO3-3SiO2 and return ½Y3Al5O12-3SiO2 joins. The onset glass transition temperature increases slightly with increasing silica content and Y/Al. Enthalpies of mixing were calculated on the basis of amorphous end members. Strongly negative heats of mixing support the absence of miscibility gaps except possibly for very high silica content, consistent with experimental phase analyses, which indicate much narrower miscibility gaps compared with the phase diagrams calculated on the basis of previous data and the CALPHAD formalism.  相似文献   

16.
The variation with water content of dc conductivity and Na diffusion coefficient for the Na2O · 4siO2 and Na2O · 2SiO2 glass systems was found to be similar to that of the Na2O.3SiO2 series reported earlier. The conductivity was estimated for the ternary system Na2O-H2O-SiO2 by combining the present results with the previous data on the Na2O · 3SiO2 system. When the conductivity of those glasses with a constant [Na2O] + [H2O] content was plotted against water content, a pronounced mixed "alkali" effect was demonstrated. The Haven ratio, calculated by comparison of the dc conductivity to the Na diffusion coefficient at 100°C for each of the three glass systems, was found to increase toward unity with increasing water content. This suggests that the addition of water reduces the number of sodium charge carriers. The subsequent increase in conductivity beyond the minimum with the introduction of larger amounts of water is, probably, due to an increase in the mobility of the Na+ ions.  相似文献   

17.
Amorphous lithium electrolyte thin films, xLi2O·ySiO2·zP2O5, were deposited by rf magnetron sputtering of pure and mixed-phase lithium silicate, lithium phosphate, SiO2, Li2O, and Li2CO3 targets, and their compositions were determined using proton-induced y -ray emission spectroscopy, energy-dispersive X-ray analysis, Rutherford backscattering spectrometry, and atomic-emission spectroscopy. The deposition conditions were chosen to assure thermalization of the sputtered flux, which proved to be necessary in order to obtain a homogeneous distribution of Si and P in the films. Optical absorption and ac impedance measurements showed that glass-in-glass phase separation occurred in a large SiO2-rich domain of the composition diagram. In contrast to bulk glasses, all of the Li2O–SiO2 films were phase-separated, including those with lithia contents larger than lithium disilicate. High-performance liquid chromatography measurements revealed that, analogous to bulk glasses, the addition of SiO2 to Li2O-P2O5 compositions reduced the number of phosphate anion dimers, trimers, and higher anion polymers in the films through the formation of -Si-O-P-bonds. However, in contrast to bulk glasses, the distribution of phosphate anion polymers followed closely the Flory distribution, with the fraction of anion polymers decreasing monotonically with increasing chain length.  相似文献   

18.
Directionally solidified mullite fibers have been grown by the laser-heated, float-zone method from starting materials with a nominal composition of 3Al2O3·2SiO2. The fibers used in this study have large single-crystal regions with composition 2.5Al2O3·SiO2 and (001) fiber axis orientation. The complete elastic tensor of these samples has been determined by Brillouin spectroscopy at room temperature and elevated temperatures up to 1200°C. Isotropic moduli (bulk, shear, and Young's) have been calculated using the Voigt–Reuss–Hill averaging scheme. The room-temperature values obtained are K VRH= 173.5 ± 6.9 GPa, G VRH= 88.0 ± 3.5 GPa, E VRH= 225.9 ± 9.0 GPa. All moduli show gradual, linear decreases with temperature. The temperature derivatives obtained for the equivalent, isotropic moduli are d K VRH/d T =−17.5 ± 2.5 MPa/°C, d G VRH/d T =−8.8 ± 1.4 MPa/°C, d E VRH/d T =−22.6 ± 2.8 MPa/°C. Substantial differences between bulk properties calculated from the single–crystal measurements in this study and the properties reported in the literature for polycrystalline sintered mullite are identified, indicating the importance of factors such as microstructure, intergranular phases, and composition to the elasticity of mullite ceramics.  相似文献   

19.
The region of stable liquid-phase separation in the system SrO-B2O3SiO2 was found to extend from the SrO-SiO2 binary join, across the ternary region, to the SrO-B2O3 join. The boundary of the region rich in network-forming oxides lies between the SiO2-B2O3 boundary and the 2.5-mol% SrO isopleth, whereas the maximum SrO content is between 30.3 and 35.2 mol% (42 to 48 wt%) SrO at an SiO2: B2O3 ratio of 4:1. The microstructures of glasses quenched from the immiscibility region were characterized by scanning electron microscopy. Evidence is presented of both stable and metastable phase separation and of microseparation and coring in disperse-phase spheres rich in network-forming oxides.  相似文献   

20.
Glasses with compositions 50Bi2O3– x Sb2O3–10B2O3–(40– x ) SiO2 ( x =0, 1, 3, 5, 8, 10) have been prepared by conventional melt quench technique. Substitution of Sb2O3 for SiO2 exerted an obvious effect on properties of glasses, especially, increased glass transition temperature ( T g) and crystalline temperature ( T c) greatly. Results of infrared transmission spectra attributed the effect to the formation of new bridging bonds of Sb–O–B and Sb–O–Si in glass network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号