共查询到20条相似文献,搜索用时 0 毫秒
1.
Disturbance waves play an important role in interfacial transfer of mass, momentum and energy in annular two-phase flow. In spite of their importance, majority of the experimental data available in literature on disturbance wave properties such as velocity, frequency, wavelength and amplitude are limited to near atmospheric conditions (Azzopardi, B.J., 1997. Drops in annular two-phase flow. International Journal of Multiphase Flow, 23, 1-53). In view of this, air-water annular flow experiments have been conducted at three pressure conditions (1.2, 4.0 and 5.8 bar) in a tubular test section having an inside diameter 9.4 mm. At each pressure condition liquid and gas phase flow rates are varied over a large range so that the effects of density ratio, liquid flow rate and gas flow rate on disturbance wave properties can be studied systematically. A liquid film thickness is measured by two flush mounted ring shaped conductance probes located 38.1 mm apart. Disturbance wave velocity, frequency, amplitude and wavelength are estimated from the liquid film thickness measurements by following the statistical analysis methods. Parametric trends in variations of disturbance wave properties are analyzed using the non-dimensional numbers; liquid phase Reynolds number ( Ref), gas phase Reynolds number ( Reg), Weber number ( We) and Strouhal number ( Sr). Finally, the existing correlations available for the prediction of disturbance wave velocity and frequency are analyzed and a new, improved correlation is proposed for the prediction of disturbance wave frequency. The new correlation satisfactorily predicted the current data and the data available in literature. 相似文献
2.
Measurements of developing films in adiabatic high pressure steam-water flow in annular geometry have been reanalyzed and compared to a linearized film-flow model. The development rate of the outer film could be determined with good accuracy in four cases. In one case it was also possible to conclude that the inner film develops faster than the outer one. When compared to the linearized model, these observations show that the deposition rate has to be almost independent of the drop concentration at the investigated conditions. Furthermore, any significant deposition by direct impaction of drops can be excluded as it would couple the development of the two films. These conclusions are quite general and do not depend on the use of any particular correlation for the deposition or entrainment rates. Finally, a rough estimate of the deposition rate was possible, confirming that deposition rates are considerably lower at high pressure steam-water flows than in air-water flows. 相似文献
3.
In a companion paper, mechanistic models of major fluid particle interaction phenomena involving two bubble groups have been proposed. The prediction of interfacial area concentration evolution using the one-dimensional two-group transport equation and evaluation with experimental results are performed in the paper. These evaluations are based on solid databases for a 2-inch air-water loop with sufficient information on the axial development and the radial distribution of the local parameters. Model evaluation strategies are systematically analyzed. The predictions for the interfacial area concentration evolution demonstrate satisfactory accuracy. The proposed model predicts a smooth transition across the bubbly-to-slug flow regime boundary and demonstrates mechanisms for the generation and development of the cap/slug bubble group. The two-group interfacial area transport equation covers a wide range from bubbly, slug, to churn turbulent flow regimes for adiabatic air-water upward flow in moderate diameter pipes. The generality of the interfacial transport model is also discussed. 相似文献
4.
Upward annular two-phase flow in a vertical tube is characterized by the presence of liquid film on the tube wall and entrained droplet laden gas phase flowing through the tube core. Entrainment fraction in annular flow is defined as a fraction of the total liquid flow flowing in the form of droplets through the central gas core. Its prediction is important for the estimation of pressure drop and dryout in annular flow. In the following study, measurements of entrainment fraction have been obtained in vertical upward co-current air–water annular flow covering wide ranges of pressure and flow conditions. Comparison of the experimental data with the existing entrainment fraction prediction correlations revealed their inadequacies in simulating the trends observed under high flow and high pressure conditions. Furthermore, several correlations available in the literature are implicit and require iterative calculations.Analysis of the experimental data showed that the non-dimensional numbers, Weber number ( We = ρgjg2D/ σ(Δ ρ/ ρg) 1/4) and liquid phase Reynolds number ( Ref = ρfjfD/ μf), successfully collapse the data. In view of this, simple, explicit correlation was developed based on these non-dimensional numbers for the prediction of entrainment fraction. The new correlation successfully predicted the trends under the high flow and high pressure conditions observed in the current experimental data and the data available in open literature. However, in order to use the proposed correlation it is necessary to predict the maximum possible entrainment fraction (or limiting entrainment fraction). In the current analysis, an experimental data based correlation was used for this purpose. However, a better model or correlation is necessary for the maximum possible entrainment fraction. A theoretical discussion on the mechanism and modeling of the maximum possible entrainment fraction condition is presented. 相似文献
5.
A systematic study of disturbance wave properties in annular flow is reported. Frequencies and velocities were deduced from correlational analysis of film thickness records. The data is shown to agree with the more reliable earlier studies, though these were not so extensive. The spacing between waves has also been deduced. The effects of flow rates on this parameter are explained and its relationship to wave height is examined. 相似文献
6.
In this paper, a new two-fluid CFD (computational fluid dynamics) model is proposed to simulate the vertical upward two-phase annular flow. This model solves the basic mass and momentum equations for the gas core region flow and the liquid film flow, where the basic governing equations are accounted for by the commercial CFD package Fluent6.3.26 ®. The liquid droplet flow and the interfacial inter-phase effects are accounted for by the programmable interface of Fluent, UDF (user defined function). Unlike previous models, the present model includes the effect of liquid roll waves directly determined from the CFD code. It is able to provide more detailed and, the most important, self-standing information for both the gas core flow and the film flow as well as the inner tube wall situations. 相似文献
7.
Measurements of film flow rates in diabatic annular flow in tubes with various axial power distributions were carried out in the high-pressure two-phase flow loop at the Royal Institute of Technology (KTH), Sweden. The measurements were performed at conditions typical for boiling water reactors, i.e. 7 MPa pressure and total mass flux in a range from 750 to 1750 kg/m 2s. Four different axial power distributions were used and the film mass flow was measured at 7 axial locations for each set of boundary conditions. The results show that the outlet peaked distribution gives less film than the inlet peaked one. This result is consistent with well known trends from measurements of dryout power. The measurements also show that the film flow at the onset of dryout is very small at investigated conditions in agreement with earlier studies. Finally it is shown that the present data is well predicted by two selected phenomenological models of annular flow. 相似文献
8.
An experiment has recently been completed at Xi’an Jiaotong University (XJTU) to obtain wall-temperature measurements at supercritical pressures with upward flow of water inside vertical annuli. Two annular test sections were constructed with annular gaps of 4 and 6 mm, respectively, and an internal heater of 8 mm outer diameter. Experimental-parameter ranges covered pressures of 23-28 MPa, mass fluxes of 350-1000 kg/m 2/s, heat fluxes of 200-1000 kW/m 2, and bulk inlet temperatures up to 400 °C. Depending on the flow conditions and heat fluxes, two distinctive heat transfer regimes, referring to as the normal heat transfer and deteriorated heat transfer, have been observed. At similar flow conditions, the heat transfer coefficients for the 6 mm gap annular channel are larger than those for the 4 mm gap annular channel. A strong effect of spiral spacer on heat transfer has been observed with a drastic reduction in wall temperature at locations downstream of the device in the annuli. Two tube-data-based correlations have been assessed against the experimental heat transfer results. The Jackson correlation agrees with the experimental trends and overpredicts slightly the heat transfer coefficients. The Dittus-Boelter correlation is applicable only for the normal heat transfer region but not for the deteriorated heat transfer region. 相似文献
9.
Flooding is classified into exit flooding and entrance flooding depending on the positions at which it is initiated. It is postulated that flooding may result from the instabilities of roll waves and the stationary wave generated at the entrance and the exit respectively. Based on the two-fluid model, the neutral stability condition for wave instabilities is derived by studying hyperbolicity breaking near a singular point in two-phase flow. It turns out to be a type of onset condition of Helmholtz instability; the critical relative velocity depends on the void fraction derivative of the interfacial pressure force as well as on the void fraction and density ratio. In order to obtain information on the interfacial pressure force, a Korteweg-de Vries solitary wave is studied with the assumption that its wavenumber is the same as that of the fastest-growing sine wave. Predictions by the correlations for entrance flooding and exit flooding are in good agreement with experimental data. Also, the present model is able to consider the effect of the test section length on flooding. 相似文献
10.
The behavior of individual interfacial waves on liquid film in vertically upward air-water annular flows has been visualized, observed and analyzed by a pigment luminance method(PLM) which was calibrated with a fiber-optic liquid film sensor. By means of this technique, we distinguished three different types of interfacial waves, i.e. the ripple wave, the ring wave and the disturbance wave. Furthermore we measured the characteristics of these three different kinds of waves, and in particular those of the disturbance wave: i.e. its propagation velocity, its frequency in passing and the distance between two adjacent waves, and then obtained the dependency of these characteristics on the air and water volumetric fluxes jg and jl. These results agreed well with the results obtained by other investigators, using an electric needle contact method. A probable mechanism of the occurrence of the ring and the disturbance waves was posited. 相似文献
11.
When a flow obstruction such as a cylindrical spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heating tube is severely affected by its existence. In some cases, the cylindrical spacer has a cooling effect, and in the other cases it causes the dryout of the cooling water film on the heating surface resulting in the burnout of the heating tube.In the present paper, we have focused our attention on the influence of a flow obstacle on the occurrence of burnout of the heating tube in boiling two-phase flow.The results are summarized as follows: (1)When the heat flux approaches the burnout condition, the wall temperature on the heating tube fluctuates with a large amplitude. And once the wall temperature exceeds the Leidenfrost temperature, the burnout occurs without exception. (2)The trigger of dryout of the water film which causes the burnout is not the nucleate boiling but the evaporation of the base film between disturbance waves. (3)The burnout never occurs at the downstream side of the spacer. This is because the dryout area downstream of the spacer is rewetted easily by the disturbance waves. 相似文献
12.
If a flow obstacle, such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions, a spacer has a cooling effect, and under other conditions, the spacer causes dryout of the cooling water film on the heating surface. The burnout mechanism, which always occurs upstream of a spacer, however, remains unclear.In a previous paper [Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81–90], we reported that the disturbance wave has a significant effect on dryout and burnout occurrence and that a spacer greatly affects the behavior of the liquid film downstream of the spacer.In the present study, we examined in detail the influences of a spacer on the heat transfer and film thickness characteristics downstream of the spacer by considering the result in steam–water and air–water systems. The main results are summarized as follows: - (1) The spacer averages the liquid film in the disturbance wave flow. As a result, dryout tends not to occur downstream of the spacer. This means that large temperature increases do not occur there. However, traces of disturbance waves remain, even if the disturbance waves are averaged by the spacer.
- (2) There is a high probability that the location at which burnout occurs is upstream of the downstream spacer, irrespective of the spacer spacing.
- (3) The newly proposed burnout occurrence model can explain the phenomena that burnout does occur upstream of the downstream spacer, even if the liquid film thickness tF m is approximately the same before and behind the spacer.
Article Outline- 1. Introduction
- 2. Experimental apparatus and procedure
- 2.1. Experimental apparatus
- 2.2. Definition of burnout occurrence on the heating tube
- 2.3. Experimental conditions
- 2.4. Current burnout occurrence model in a BWR
- 3. Experimental results and discussion
- 3.1. Influence of the spacer on heat transfer characteristics
- 3.2. Influence of the spacer on film thickness characteristics
- 3.3. Proposed burnout occurrence model
- 4. Conclusion
- References
1. IntroductionNuclear power stations must be designed to be highly efficient as well as to operate safely. Based on an experimental result obtained by using a large-scale apparatus, the thermal design of a boiling water reactor is restricted by heat removal from nuclear rods in close vicinity to cylindrical spacers that support the nuclear rods ( Arai et al., 1992). However, since this mechanism is not yet fully understood, clarification of the burnout mechanism near the cylindrical spacers in the boiling water reactor is necessary. Several studies, including Yokobori et al. (1989), Sekoguchi et al. (1978) and Feldhaus et al. (2002), have been performed in order to clarify the burnout occurrence mechanism. Although, generally the flow pattern is essentially in two-phase flow, most of the above-mentioned studies did not observe the flow pattern. Few studies have attempted to clarify in detail the burnout or dryout occurrence mechanisms near the spacer by observing the boiling two-phase flow behavior.Based on the information described above, Fukano et al. (1996) made a detailed observation of the behavior of boiling two-phase flow near a flow obstruction in order to clarify the mechanism of dry patch occurrence by placing a cylindrical flow obstruction in a vertical annular channel. The flow obstruction was designed to simulate a cylindrical spacer in an actual boiling water reactor. Furthermore, Fukano et al. (1997) performed an experimental investigation on the effects of the geometry of the spacer, i.e., a grid spacer or a cylindrical spacer, on dry patch occurrence. They clarified that dry patches occur more frequently when the grid spacer is used because the wedge-like gaps formed within the grid spacer hold water near the narrowest region inside the spacer gap through surface tension. Accordingly, typical drainage occurs just beneath the spacer, when the heat flux is not so large ( Fukano et al., 1980).Furthermore, the axial distance between the spacers has a strong effect on the critical heat flux near the spacer. In an actual nuclear reactor, for example, the distance of 500 mm was adopted. Fukano (1998) tried to clarify the effect of the existence of an upstream spacer on the dry patch occurrence on the heating surface around a downstream spacer by observing the flow configuration near both spacers in detail. Moreover, Fukano et al. (2003) performed a detailed investigation of the wall temperature fluctuation characteristics near the cylindrical spacer for the case in which repeated dryout and rewetting of the heating surface occurred. As a result, it was clarified that the mechanism of dry patch occurrence was due to the evaporation of a water film that originated primarily from the drainage of water film in the case of low heat flux, and was due to the evaporation of the water film (the base film) in the disturbance wave flow in the case of high heat flux. Fukano et al. (2002) also clarified the influence of the spacer in transient two-phase flow, i.e., the influence on the transition of the operating point on parameters, such as the heat flux, the mass flow rate and the inlet quality of the test section. As a result, even if the flow pattern changes rapidly by the stepwise change of an operation parameter, the flow transition proceeds safely, provided that the change causes an increase in the vapor velocity, i.e., an increase in the shear force acting on the water film. On the other hand, if the change causes a decrease in the vapor velocity, transient burnout may occur, even when the operation condition after the change is less than the steady burnout condition. Furthermore, Mori and Fukano (2003) performed a detailed observation of flow phenomena near a spacer using a high-speed video camera for the case in which burnout occurred in a steady boiling two-phase flow. As a result, it is clarified that the disturbance waves have a strong effect on burnout occurrence, that is, the interval of the disturbance waves is very important because the dry patch always occurs at the base film between the neighboring disturbance waves. In addition, Mori and Fukano (2006) clarified statistically the relationship among the interval of the disturbance waves, dryout of the thin water film and burnout of the heating tube for the case in which a spacer is placed in an annular channel.The main purpose of the present paper is to clarify in detail the influence of a spacer on the heat transfer and film thickness characteristics downstream of a spacer. We will propose later herein a new burnout occurrence model in consideration of the unsteady nature of two-phase flow. 2. Experimental apparatus and procedure2.1. Experimental apparatusFig. 1 shows a schematic diagram of the experimental apparatus of the steam–water system. Test section (1) was placed vertically in a closed forced convection loop. A working fluid, distilled water, was supplied by a feed pump (7) into the test section after passing through a pre-heater (10), where the temperature of the working fluid at the inlet of the test section, i.e., the degree of inlet subcooling was controlled. The two-phase mixture was separated into water and steam in a separator (2) downstream from the exit of the test section. Both the water and the steam were collected in a reservoir (6) after being cooled to below saturation temperature in each condenser (5) in order to prevent cavitation in the feed pump (7). 相似文献
14.
Related to nuclear reactor safety problems, such as the loss of coolant accident caused by some small crevasses in nuclear reactor, choked flows after postulated breaks of hot and cold legs of pressurized water reactors and the boiling flow instability in parallel channels, the characteristics of pressure wave propagation were investigated experimentally for the air-water bubbly and slug two-phase flow in a vertical pipe. Pressure wave was generated from the small pressure disturbance by the up-and-down movement of piston in the test section. Air void fraction was up to 0.7 and superficial liquid velocity was up to 1.5 m/s as experimental conditions. The experimental results show that the pressure wave propagation velocity in bubbly flow decreases acutely with the increase of air void fraction from 0 to 0.05. In slug flow, it is constant when the air void fraction is less than 0.5 but increases gradually when the void fraction increases beyond 0.5. The attenuation coefficient of pressure wave increases with the increase of air void fraction in bubbly flow. The dependency of pressure wave propagation velocity on angle frequency ω in air-water flow shows the dispersion characteristic. The propagation velocity and attenuation coefficient increases gradually with the increase of angle frequency. However, the increase vanishes slowly as the angle frequency reaches 250 Hz in bubbly flow. The propagation of pressure wave in bubbly flow is independent of the superficial velocity of fluids in the range of experiment. 相似文献
15.
If a flow obstacle such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions the spacer has a cooling effect, and under other conditions the spacer causes dryout of the cooling water film on the heating surface, resulting in burnout of the tube. The burnout mechanism near the spacer, however, remains unclear.In a previous paper (Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81–90), we reported that the disturbance wave has a significant effect on dryout occurrence. Therefore, in the present paper, the relation between dryout, burnout occurrence, and interval between two successive disturbance waves obtained from the differential pressure fluctuation caused by the disturbance waves passing by a spacer, is further discussed in detail. 相似文献
16.
When a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in other cases it causes the dryout of the cooling water film on the heating surface resulting in the burnout of the tube. In the present paper we will discuss temperature fluctuations in relation to the change in the flow configuration near the cylindrical spacer in transient boiling two-phase flow caused by the stepwise change of the operation parameters such as the heat flux, the mass flow rate, and the inlet quality of the test section. As a result it is concluded that: Even if the flow pattern changes rapidly by a stepwise change of an operation parameter, the transition of flow proceeds safely provided that the change causes the increase of vapor velocity, i.e. the increase of the shear force which is acting on liquid film flow. On the other hand if the change causes the decrease of the vapor velocity, it must be noticed that the transient burnout possibly occurs even when the operating condition after the change is less than the steady burnout condition. 相似文献
17.
The flooding and flow reversal conditions of two-phase annular flow are mathematically defined in terms of a characteristic function representing a force balance. Sufficiently below the flooding point in counter-current flow, the interface is smooth and the characteristic equation reduces to the Nusselt relationship. Just below the flooding point and above the flow reversal point in cocurrent flow, the interface is “wavy”, so that the interfacial shear effect plays an important role. The theoretical analysis is compared with experimental results by others. It is suggested that the various length effects which have been experimentally observed may be accounted for by the spatial variation of the droplet entrainment. 相似文献
18.
Countercurrent flow limit phenomena in the loops of a PWR affects small break LOCA transients significantly. This paper reviews the countercurrent flow at three different locations in the loop to identify a limiting phenomenon during a cold leg small break.It is believed that the limiting phenomenon occurs at the inclined pipe which connects the hot leg to the steam generator. Therefore this phenomenon must be simulated properly in any numerical of physical simulations of small break LOCA's. It is pointed out that data from any test loops with scaling have to be analyzed with caution. Distortions in the flow areas of the steam generator tubes and hot leg may result in nontypical transients. 相似文献
19.
An analytical model that includes the steam condensation effect has been derived and a parametric study has been performed. In addition, a series of experiments were performed and a total of 34 experimental data for the onset of countercurrent flow limiting (CCFL) in nearly horizontal countercurrent two-phase flow have been obtained for various flow rates of water. Comparisons of the present CCFL data with slug formation models show that the agreement between the present as well as the existing model and the data is about the same. However, the deviation between Taitel and Dukler’s model predictions and the data is the largest when jf<0.04 m s −1. A parametric study of the effect of condensation using the present model shows that, when all local conditions are similar, the model predicted local gas velocities that cause the onset of flooding are slightly lower when condensation occurred. Based on the visual observation and the evaluation of the present work, it has been concluded that the criterion derived for the onset of slug flow can be directly used to predict the onset of inner flooding in nearly horizontal two-phase flow within the experimental ranges of the present work. 相似文献
20.
对管径15 mm,管长6 m的有机玻璃管,在两种不同的向上倾斜角度(15°、30°)下,同向通过的气水两相流流型转变进行了分析,列出相应的转变准则关系式。结果显示,弹状流向泡状流转变界限的实验值与计算符合较好,间歇流向环状流的转变界限在低液体流速下符合较好。 相似文献
|