首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
快堆MOX元件运输容器的缓冲器是决定其放射性包容边界安全的重要部件。某型号MOX元件运输容器的缓冲器材料首次选择泡沫铝,通过自由下落试验的标准姿态进行吸能原理分析,设计出了适用于缓冲器材料的型号、结构及关键参数。对选定的材料进行了拉伸、压缩、剪切3种准静态和动态力学性能试验,获得了用于数值模拟计算的材料本构关系参数,并对模型参数进行了测试,用弯曲试验进行了验证。有限元分析和试验结果对比显示:运输容器缓冲器材料的本构关系具有适用性,可用于快堆某型号MOX元件运输容器的自由下落分析计算。  相似文献   

2.
3.
Abstract

The moisture content of wood is known to have a significant influence on the wood’s mechanical properties. Using wood as an energy absorber in impact limiters of packages for the transport of radioactive material, it is of particular importance to ensure the moisture content and thus relevant mechanical properties to be in specified limits. The paper surveys the influence of wood moisture content on the mechanical properties of wood. Different measuring methods are discussed with respect to in situ applicability, accuracy and effort. The results of an experimental analysis of the accuracy of hand held moisture metres using the electrical resistance method are discussed. Conclusions are drawn regarding the measurement of moisture content of wood upon delivery as well as of complete impact limiter assemblies. Requirements for quality surveillance during manufacturing of wood filled impact limiters are derived and it is exemplified how to meet them. Construction, manufacturing and inspection of impact limiter encapsulation with regard to leak tightness are addressed.  相似文献   

4.
Wooden impact limiters are used to reduce the forces acting on packages for irradiated fuel assemblies in hypothetical accident situations. For spruce specimens designed corresponding to the filling of real impact limiters, the dynamic force-compression characteristic has been evaluated in experiments according to the IAEA 9 m drop. Force-compression curves have been obtained, which are compared with those of equivalent static experiments. An analytical and a finite element approach have been used in combination with the dynamic compression curves to calculate the maximum cask deceleration and the maximum impact limiter deformation for a 9 m drop in an end-on, a side and an edge impact. The results are compared with those of 9 m drop experiments performed on original casks. An agreement between calculation and experiment has been found.  相似文献   

5.
Abstract

Cylindrical fuel casks often have impact limiters surrounding the ends of the cask shaft in a typical 'dumbbell' arrangement. The primary purpose of these impact limiters is to absorb energy to reduce loads on the cask structure during impacts associated with a severe accident. Impact limiters are also credited in many packages with protecting closure seals and reducing peak temperatures during fire events. For this credit to be taken in safety analyses, the impact limiter attachment system must be shown to retain the impact limiter following normal conditions of transport (NCT) and hypothetical accident conditions (HAC) impacts. Large casks are often certified by analysis only because of the cost associated with testing. Therefore, some cask impact limiter attachment systems have not been tested in real impacts. A recent structural analysis of the T-3 spent fuel containment cask found problems with the design of the impact limiter attachment system. Assumptions in the original safety analysis for packaging (SARP) concerning the loading in the attachment bolts were found to be inaccurate in certain drop orientations. This paper documents the lessons learned and their applicability to impact limiter attachment system designs.  相似文献   

6.
Domestic and international regulations for the transportation of radioactive materials strictly prescribe the design requirements for spent nuclear fuel (SNF) transport casks. According to the applicable codes, a transport cask must withstand a free-drop impact of 9 m onto an unyielding surface and a free-drop impact of 1 m onto a mild steel bar. However, the structural performance of a transport cask is not easy to evaluate precisely because the dynamic impact characteristics of the cask, which includes impact limiters to absorb the impact energy, are so complex.  相似文献   

7.
Inconel and graphite have been tested as limiter materials in the TFR Tokamak. Their behaviour during MHD activity and plasma current disruptions in high density low impurity content plasmas has been studied. The discharge energy balance with auxiliary heating has been established by using infrared measurements of the limiter temperature increase and bolometric techniques. Measurements of the temperature distribution on different limiters show that the maximum limiter temperature can be reduced by a large factor by an appropriate choice of the limiter shape and of its total area. The characteristics of the scrape-off layer in the limiter shadow has also been investigated in different limiter configurations. The experimental results and observations indicate a low physical and chemical sputtering of the graphite limiters during plasma discharges and their good properties for thermal shocks during major disruptions.  相似文献   

8.
Abstract

The research described in this paper concerns the characterisation of polyurethane and polystyrene foam for use as shock absorbing filling materials in impact limiters for nuclear transport packages. For a comparatively small cylindrical transport package the mechanical properties of the foam material in compression tests, a preliminary determination of the best foam density and its co-relation with other material properties, appropriate selection of polyurethane and polystyrene from the relation between the reaction force due to the drop impact and their compression characteristic properties are discussed.  相似文献   

9.
Type B packages for the transportation of radioactive materials must remain ‘essentially leak tight’ under severe regulatory accident conditions, defined in the US Nuclear Regulatory Commission’s 10 CFR 71·73 and the International Atomic Energy Agency’s TS-R-1. The 9-m free drop test requirement onto an unyielding surface is performed in an orientation ‘for which maximum damage is expected’. Analytical techniques are used to evaluate various possible impact orientations before testing, and historically these maximal damage orientations have been side, slap-down, end, and centre-of-gravity over corner. Other orientations are rarely considered. Sandia National Laboratories (SNL) was asked by Equipos Nucleares SA (ENSA) to design, analyse, and test an impact limiter system for a newly designed rail cask. During the conceptual design process, SNL performed due diligence and evaluated a wide spectrum of possible impact orientations, in order to assure that peak cask body acceleration design goals were not exceeded. However, design of the impact limiter, including not only crush strength of constituent materials (which can be orientation and temperature dependent), but also the shape of the impact limiter, greatly affects peak acceleration response during 9-m drops in various orientations. Although many impact limiter design shapes resemble truncated right circular cylinders attached to each end of the cask, some tend to round the outer corners or truncate those corners with conical sections. SNL’s original conceptual design followed a similar theme, intending to use polyurethane foam or aluminium honeycomb within a bevelled corner shaped cylindrical shell. Detailed finite element analyses indicated excellent impact resistance at regulatory cold temperatures in the stereotypically tested side, slap-down, end, and CGOC impact orientations. Shortly before proceeding to engineering design, a rarely-considered impact orientation of 45° from horizontal indicated that cask body acceleration levels jumped unexpectedly, exceeding the design goal due to insufficient crushable material protecting the sharp corner of the cask. A complete re-design of the impact limiter was necessary, and the lessons learned from this experience could have implications for future impact limiter designs, and possibly existing designs that may not have considered this atypical impact orientation during the design process.  相似文献   

10.
In context with new cask designs and their approval procedure, the experimental testing of impact limiters under drop test conditions becomes more and more important in order to assess the damage mechanics behaviour and safety margins for validation reasons. In recent years, various designs of impact limiters have been tested by the Federal Institute for Materials Research and Testing within specific component testing and particularly with regard to type B package design approval procedures. The paper focuses on the experimental realisation of impact limiter tests and presents implemented measurement techniques to determine the amount of deformation and to explain the impact behaviour by means of photogrammetric metrology and three-dimensional fringe projection method, high speed motion analysis and adjusted deceleration measurements.  相似文献   

11.
Abstract

An improved BAM safety assessment concept for the cask material ductile cast iron (DCI) to cover higher stresses in the cask body, highly dynamic load scenarios, and a broader range of material qualities will require more extensive fracture mechanics analyses based on a combination of material testing, calculation of applied stresses, and inspection standards. As an example, the brittle fracture mechanics assessment of a surface crack in a plate due to the dynamic load from the 5 m drop of a cubic container (not equipped with impact limiters) onto a reinforced concrete target is investigated. The numerically calculated time-dependent stress intensity factor is compared with a previous static solution with the same loading history inserted. For the scenario studied the differences between the curves are negligible because a dynamic load of the cask within a time scale of millisec9nds can be considered as a quasi static load for the crack.  相似文献   

12.
Abstract

In Germany, the Federal Institute for Materials Research and Testing (BAM) is the competent authority for the mechanical and thermal design safety assessment of transport packages for radioactive material according to IAEA regulations. The combination of experimental and numerical safety proof forms the basis for a state of the art evaluation concept. Reduced scale models are often used in experimental investigation for design assessment of transport packages corresponding to IAEA regulations. This approach is limited by the fact that a reduced scale model cask can show different behaviours from a full scale cask. The paper focuses on the peculiarities of wood filled impact limiter of reduced scale models. General comments on drop testing with reduced scale models are given, and the relevant paragraphs of the IAEA regulations and Advisory Material are analysed. Possible factors likely to influence the energy absorbing capacity of wood filled impact limiting devices are identified on the basis of similarity mechanics. Among possible significant influence factors on the applicability of small scale models are strain rate and size effects, failure mechanisms, underground compliance, gravitational and friction effects. While it was possible to derive quantitative estimations for the influence of strain rate, size effects and target compliance, it was not possible to evaluate the influence of compression mechanisms and gravitation. In general, if reduced scale models are used in proof of safety, uncertainties increase in comparison with full scale models. Additional safety factors to exclusively cover the uncertainties of reduced scale model testing have to be demanded. The possible application of reduced scale models in regard to crucial aspects for proof of safety has to be analysed critically.  相似文献   

13.
Experiments with lithium plasma facing components (PFCs) show promising results for the operation of hot plasma facilities and the general improvement of plasma parameters. The design and development of new tokamak plasma facing material (PFM) based on lithium capillary porous systems (CPS) are described in this paper.The recent progress in the development of limiters with different kinds of CPS is relevant for protection of tokamak PFCs from damage under normal operation, ELMs and disruptions. New PFM eliminates the lithium flux into plasma, its pollution and lithium accumulation.Here we present an overview of the design and the experimental tests of the liquid lithium limiters. These limiters are based on CPS with hard matrix from stainless steel mesh, molybdenum and tungsten. Different types of limiter have been taken into account: the horizontal and vertical rail type limiters with passive and active cooling for investigation the possibility to provide the closed lithium circulation in tokamak chamber; the ring CPS-based limiter for investigation of lithium behavior in limiter scrape-off layer (SOL).Here we also present the preliminary results of the application of the cryogenic techniques for lithium removal from the chamber wall after operation in hot plasma.  相似文献   

14.
In the cask impact limiter design, the functions of steel case should be evaluated for the protection of the filler materials and the impact energy absorption by the buckling deformation in both the fire and impact accidents. The objective of this paper is to evaluate the beneficial influence of the intermittent weldment of the cask impact limiter case on the cask impact behavior. This paper describes the test results for the joint strength evaluation of intermittent weldment and the cask impact analysis considering the weldment rupture of the impact limiter case. The weldment rupture of the impact limiter case causes to lose their constraining effect for the wood blocks, which are filled into the metal incasement between the case and the gussets. The weldment rupture of the impact limiter case reduces the impact force which acts on the impact target significantly in vertical and horizontal drop impacts. Therefore the beneficial effect of weldment rupture should be considered in the impact limiter design and the cask impact analysis.  相似文献   

15.
《等离子体科学和技术》2019,21(10):105105-46
The limiter target electrostatic measurement system including limiter grounding current sensors and Langmuir probes have been newly developed for the measurement of the limiter target area on the Joint-Texas Experimental tokamak(J-TEXT).Current sensors fixed between graphite limiters and the vacuum vessel walls are used to measure the currents between limiters and vessel wall.Simultaneously,a rectangular poloidal array containing 54 Langmuir probes is embedded in the graphite tiles of limiters for a more localized measurement.Based on this system,the effect of both the plasma's inherent behavior,including plasma motion and the 2/1 tearing mode,and the electrode biasing on probe and sensor signals have been observed and analyzed in the experiments.  相似文献   

16.
Impact limiters installed on nuclear spent fuel transport casks are used to absorb energy and limit overload during transport and accidents. The two-way corrugated aluminum honeycomb, a new kind of filler material, is designed based on the action mechanism of the impact limiter. Quasi-static compression tests are used to compare the properties of the honeycomb and the traditional filler material, paulownia wood. Experimental results indicated that the compressive and energy absorption properties of paulownia wood with axial wood grain and radial wood grain were very different. Also, the moisture content of paulownia wood led to a significant decrease in its properties. The two-way corrugated aluminum honeycomb, as a new porous material, showed better compression and energy absorption properties than paulownia wood in the x, y, and z directions. The peak stress (σpe), platform stress (σpl), and energy absorption capacity (WEA) were 2.10 times, 2.07 times, and 1.69 times higher than that of paulownia wood with axial wood grain. The two-way corrugated aluminum honeycomb is a filler material that has essential application value in impact limiters of spent fuel transport casks.  相似文献   

17.
Abstract

Transport and storage packages used for the safe transport of radioactive materials are required to satisfy IAEA regulations. One key design requirement for a radioactive material transport package is that under a 9 m regulatory drop test, containment functions are maintained. For certain payload types, such as fuel assemblies, impact loads on the payloads may need to be controlled in order to maintain spacing and confinement. To achieve all of this, detailed and accurate characterisation of the impact absorbing material is important in order to design an effective shock absorber. Polyurethane foam is an excellent energy absorbing material because it has a relatively high specific strength, a large compressive deformation, much of this at constant force, and a predictable compressive strength characteristic. Traditionally various types of wood have been used for this purpose, however foams are a more cost effective alternative, which are readily available, and can be formed and shaped easily. Some grades may have the added advantage of providing an almost isotropic crush response, combined with significant thermal protection. The general compressive strength properties of foams and their temperature dependencies are well documented by manufacturers; however, strain rate sensitivity and stiffness variation with orientation are not readily available. Hence impact compression tests for polyurethane foams for a range of densities from 56 to 320 kg m–3 were specified by Rolls-Royce and performed by the Health and Safety Laboratory. These tests included dynamic conditions for a range of strain rates and temperatures and a selection of orientations of the foam. Following collation of the test results, property curves were derived for the range of temperatures at which the package was expected to operate in service between –10 and +75°C. The properties for a given specification of foam will vary within a defined tolerance range, mainly due to the variables inherent during manufacture. Hence nominal static curves were derived for each foam and a number of factors were taken into account to derive the full range of foam properties: density, compressive strength, temperature and manufacturer supplied tolerance. The net result of this work was a series of force displacement plots, depicting upper and lower bounds to account for the cumulative effects of many variables. Accounting for these upper and lower performance bounds is an essential approach in justification of any modern package design. This paper describes the characterisation and mathematical modelling of polyurethane foam for use as the main impact energy absorber in a new design of package for transporting fresh fuel. The non-linear finite element (FE) code LS-DYNA was used to carry out simulation of the tests. The HONEYCOMB material model available in LS-DYNA was used to accurately predict the test measurements of the foam material. The properties derived for the foam were then used as input to the full FE model used for the licensing of the new package design. Full scale drop testing of the package demonstrated good correlation of deformations between test and FE model analysis, providing good validation evidence of the foam characterisation in the transport package.  相似文献   

18.
Abstract

Today, a lot of radioactive waste is transported in vehicles equipped with ISO containers. The advantage of using ISO containers is that they are used in vast numbers worldwide and hence well developed handling and transport systems exist. They have a sealed structure, which avoids loss or dispersal of the contents. The aim of this study is to show how it is possible to avoid any dispersal of the contents or any radioactive release with the help of an internal impact limiter system. In this way the ISO package can also be loaded with a maximum pay-load and the radioactive waste comprising drums, dismantled parts or glove boxes should remain practically intact, even if the external structure of the ISO package is severely damaged. In particular, for the 1 m high drop test on a punch, a test calculation method analysing the safety margin of the resistance of the packaging is developed. In this way the weakest parts of the external structure can be discovered without expensive tests.  相似文献   

19.
Recently, the dry-storage technique for storing spent fuels or radioactive wastes in shipping containers has been improved as one of the new technologies in the nuclear-fuel cycle. Mitsui Engineering and Shipbuilding has engaged for 5 years in the development of a radioactive waste container made of modular cast iron. This paper describes the physical properties of nodular cast iron and a fracture mechanical study of the container made of this material.The material is equivalent to FCD 37 in the JIS Standard. Many tests were carried out to obtain the mechanical properties, the fracture toughness and other characteristics using specimens machined from a thick-walled casting block.Then, the structural integrity of the cubic-type container made of this material was estimated on the basis of fracture mechanics. The critical flaw sizes regarding stresses occurred during a 9-meter drop test and a 1-meter punch-drop test were calculated. The results indicate that these sizes can be determined by a nondestructive inspection.Consequently, it has been analytically confirmed that nodular cast iron containers are strong enough to withstand an impact load during drop tests if the applied stresses are less than the yield stress.  相似文献   

20.
There are two movable limiters that have been installed on EAST. The movable limiter consists of three parts that are blade, support components and drive components. The blade which consists of heat sink and graphite tiles has to face plasma during plasma discharge. The support components consist of a long shaft and a movable plate. The drive components consists of a screw shaft, a step motor, four guide shafts and two support plates. There is an extra support which has fit in Tokamak and a frame on the outside of the flange. The specific shape of the blade has been optimized so that the graphite tiles on the blade can withstand max 5 MW/m^2 heat load with two long cooling channels. The long shaft of the transfer components connect with blade to make it can move along the axis of the limiter. The movable blade could adjust a wide variety of plasma major and minor diameters. The drive components provide motion from step motor which can be remote controlled in the control room far away from the scene. The rotation is translated to slide motion by a screw shaft. The screw shaft can push the slide which connected with the long shaft to at last move the blade. To introduce the motion from outside to the vacuum vessel, the limiter has a long bellow and special structure as dynamical seal. This seal structure proved very reliable. The remote control system has been also equipped the distance sensor to provide the information of the position of the limiter. The control system is based on PC so it can be easily operated. The two movable limiters have been installed on the EAST. During past twice discharges, the movable limiter proved to be a useful tool for EAST to control the plasma boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号