首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed simulation of the thermal stresses of the reactor pressure vessel (RPV) wall in case of pressurized thermal shock (PTS) requires the simulation of the thermal mixing of cold high-pressure safety injection (HPI) water injected to the cold leg and flowing further to the downcomer. The simulation of the complex mixing phenomena including, e.g., stratification in the cold leg and buoyancy driven plume in the downcomer is a great challenge for CFD methods and requires careful validation of the used modelling methods.The selected experiment of Fortum mixing test facility modelling the Loviisa VVER-440 NPP has been used for the validation of CFD methods for thermal mixing phenomena related to PTS. The experimental data includes local temperature values measured in the cold leg and downcomer. Conclusions have been made on the applicability of used CFD method to thermal mixing simulations in case with stratification in the cold leg and buoyant plume in the downcomer.  相似文献   

2.
The comparison tests for the direct emergency core cooling (ECC) bypass fraction were experimentally performed with a typical direct vessel injection (DVI) nozzle and an ECC column nozzle having a yaw injection angle to the gravity axis. The ECC yaw injection nozzle is newly introduced to make an ECC water column in the downcomer region. The yaw injection angle of the ECC water relative to the gravity axis is varied from 0 to (±)90° stepped by 45°. The tests are performed in the air–water separate effect test facility (direct injection visualization and analysis (DIVA)), which is a 1/7.07 linearly scaled-down model of the APR1400 nuclear reactor. The test results show that (1) if the ECC water column is injected into the wake region which is induced by the hot leg blunt body in the downcomer annulus, the ECC bypass fraction is greatly reduced compared with the typical horizontal ECC injection which makes ECC film on the downcomer wall. At the same time, the ECC penetration toward the lower downcomer region becomes larger than those of a typical horizontal type of direct vessel injection on the downcomer wall vertically. (2) If the ECC water column is injected near the broken cold leg, the ECC water is directly bypassed. Thus, the ECC penetration fraction is greatly reduced compared with a typical film type of the horizontal ECC injection. (3) In order to minimize the ECC bypass fraction, the ECC water should be injected toward the wake region of the hot leg blunt bodies.  相似文献   

3.
High-thermal performance PWR (pressurized water reactor) spacer grids require both low pressure loss and high critical heat flux (CHF) properties. Numerical investigations on the effect of angles and position of mixing vanes and to understand in more details the main physical phenomena (wall boiling, entrainment of bubbles in the wakes, recondensation) are required.In the field of fuel assembly analysis or design by means of CFD codes, the overwhelming majority of the studies are carried out using two-equation eddy viscosity models (EVM), especially the standard K-? model, while the use of Reynolds Stress Transport Models (RSTM) remains exceptional.But extensive testing and application over the past three decades have revealed a number of shortcomings and deficiencies in eddy viscosity models. In fact, the K-? model is totally blind to rotation effects and the swirling flows can be regarded as a special case of fluid rotation. This aspect is crucial for the simulation of a hot channel in a fuel assembly. In fact, the mixing vanes of the spacer grids generate a swirl in the coolant water, to enhance the heat transfer from the rods to the coolant in the hot channels and to limit boiling.First, we started to evaluate computational fluid dynamics results against the AGATE-mixing experiment: single-phase liquid water tests, with Laser-Doppler liquid velocity measurements upstream and downstream of mixing blades. The comparison of computed and experimental azimuthal (circular component in a horizontal plane) liquid velocity downstream of a mixing vane for the AGATE-mixing test shows that the rotating flow is qualitatively well reproduced by CFD calculations but azimuthal liquid velocity is underestimated with the K-? model.Before comparing performance of EVM and RSTM models on fuel assembly geometry, we performed calculations with a simpler geometry, the ASU-annular channel case. A wall function model dedicated to boiling flows is also proposed.  相似文献   

4.
An ECC direct bypass fraction during a late reflood phase of a LBLOCA is strongly dependent on the characteristics of the cross flow and the geometrical configuration of a DVI in the downcomer of a pressurized light water reactor. The important design parameters of a DVI are the elevation, the azimuthal angle, and the separator to prevent a steam-water interaction. An ECC sub-channel to separate or to isolate an ECC water from a high-speed cross flow is one of the important design features to mitigate the ECC bypass phenomena. A dual core barrel cylinder as an ECC flow separator is located between a reactor vessel and a core barrel outer wall in the downcomer annulus. A new narrow gap between the core barrel and the additional dual core barrel plays the role of a downward ECC flow channel or an ECC flow separator in a high-speed cross flow field of the downcomer annulus. The flow zone around a broken cold leg in the downcomer annulus has the role of a high ECC direct bypass due to a strong suction force while the wake zone of a hot leg has the role of an ECC penetration. Thus, the relative azimuthal angle of the DVI nozzle from the broken cold leg is an important design parameter. A large azimuthal angle from a cold leg to a hot leg needs to avoid a high suction flow zone when an ECC water is being injected. The other enhancing mechanism of an ECC penetration is a grooved core barrel which has small rectangular-shaped grooves vertically arranged on the core barrel wall of the reactor vessel downcomer annulus. These grooves have the role for a generation of a vortex induced by a high-speed cross flow. Since the stagnant flow in a lateral direction and rotational vortex provides the pulling force of an ECC drop or film to flow down into the lower downcomer annulus by gravity, the ECC direct bypass fraction is reduced when compared to the current design of a smoothed wall. An open channel of grooves generates a stagnant vortex, while a closed channel of grooves creates an isolated ECC downward flow channel from a high-speed lateral flow. In this study, new design concepts for a dual core barrel cylinder, grooved core barrel, and a reallocation of the DVI azimuthal angle are proposed and tested by using an air-water 1/5 scaled air-water test facility. The ECC direct bypass reduction performances of the new design concepts have been compared with that of the standard type of a DVI injection. The azimuthal angle of the DVI nozzle from a broken cold leg varies from −15° to +52° toward a hot leg. The test results show that the azimuthal injection angle is an effective parameter to reduce the ECC direct bypass fraction. The elevation of the DVI nozzle is also an important parameter to reduce the ECC direct bypass fraction. The most effective design for reducing the ECC direct bypass fraction is a dual core barrel. The reduction fraction when compared to the standard DVI is about −30% for the dual core barrel while it is −15% for the grooved core barrel.  相似文献   

5.
This paper presents an analysis of heat-transfer to supercritical water in bare vertical tubes. A large set of experimental data, obtained in Russia, was analyzed and a new heat-transfer correlation for supercritical water was developed. This experimental dataset was obtained within conditions similar to those in supercritical water-cooled nuclear reactor (SCWR) concepts.The experimental dataset was obtained in supercritical water flowing upward in a 4-m long vertical bare tube with 10-mm ID. The data were collected at pressures of about 24 MPa, inlet temperatures from 320 to 350 °C, values of mass flux ranged from 200 to 1500 kg/m2 s and heat fluxes up to 1250 kW/m2 for several combinations of wall and bulk-fluid temperatures that were below, at, or above the pseudocritical temperature.A dimensional analysis was conducted using the Buckingham Π-theorem to derive the general form of an empirical supercritical water heat-transfer correlation for the Nusselt number, which was finalized based on the experimental data obtained at the normal and improved heat-transfer regimes. Also, experimental heat transfer coefficient (HTC) values at the normal and improved heat-transfer regimes were compared with those calculated according to several correlations from the open literature, with CFD code and with those of the proposed correlation.The comparison showed that the Dittus-Boelter correlation significantly overestimates experimental HTC values within the pseudocritical range. The Bishop et al. and Jackson correlations tended also to deviate substantially from the experimental data within the pseudocritical range. The Swenson et al. correlation provided a better fit for the experimental data than the previous three correlations at low mass flux (∼500 kg/m2 s), but tends to overpredict the experimental data within the entrance region and does not follow up closely the experimental data at higher mass fluxes. Also, HTC and wall temperature values calculated with the FLUENT CFD code might deviate significantly from the experimental data, for example, the k-? model (wall function). However, the k-? model (low Reynolds numbers) shows better fit within some flow conditions.Nevertheless, the proposed correlation showed the best fit for the experimental data within a wide range of flow conditions. This correlation has an uncertainty of about ±25% for calculated HTC values and about ±15% for calculated wall temperature. A final verification of the proposed correlation was conducted through a comparison with other datasets. It was determined that the proposed correlation closely represents the experimental data and follows trends closely, even within the pseudocritical range. Finally, a recent study determined that in the supercritical region, the proposed correlation showed the best prediction of the data for all three sub-regions investigated.Therefore, the proposed correlation can be used for HTC calculations in SCW heat exchangers, for preliminary HTC calculations in SCWR fuel bundles as a conservative approach, for future comparison with other datasets and for the verification of computer codes and scaling parameters between water and modelling fluids.  相似文献   

6.
Experimental and computational analyses of a mixing test of cold and hot water flows in a rectangular tee model of the cold leg downcomer geometry of pressurized water reactor were performed. Results obtained from COMMIX-1A computer code calculations showed reasonable agreement with the experimental findings. Counter-current flow and thermal stratification in the cold leg were observed in both the experimental and calculated results for certain ranges of test parameters.  相似文献   

7.
Experimental and computational analyses of a mixing test of cold and hot water flows in a rectangular tee model of the cold leg downcomer geometry of pressurized water reactor were performed. Results obtained from COMMIX-1A computer code calculations showed reasonable agreement with the experimental findings. Counter-current flow and thermal stratification in the cold leg were observed in both the experimental and calculated results for certain ranges of test parameters.  相似文献   

8.
The phenomenon of fluid/thermal mixing in the cold leg and downcomer of a Pressurized Water Reactor (PWR) has been a critical issue related to the concern of pressurized thermal shock. The question of imperfect mixing arises when the possibility of cold emergency core cooling water contacting the vessel wall during an overcooling transient could produce thermal stresses large enough to initiate a flaw in a radiation embrittled vessel wall. The temperature of the fluid in contact with the vessel wall is crucial to a determination of vessel integrity since temperature affects both the stresses and the material toughness of the vessel material. A simple mixing model is described which was developed as part of the EPRI pressurized thermal shock program for evaluation of reactor vessel integrity.  相似文献   

9.
Coolant mixing in the cold leg, downcomer and the lower plenum of pressurized water reactors is an important phenomenon mitigating the reactivity insertion into the core. Therefore, mixing of the de-borated slugs with the ambient coolant in the reactor pressure vessel was investigated at the four loops 1:5 scaled Rossendorf coolant mixing model (ROCOM) mixing test facility. In particular thermal hydraulics analyses have shown, that weakly borated condensate can accumulate in the pump loop seal of those loops, which do not receive a safety injection. After refilling of the primary circuit, natural circulation in the stagnant loops can re-establish simultaneously and the de-borated slugs are shifted towards the reactor pressure vessel (RPV).In the ROCOM experiments, the length of the flow ramp and the initial density difference between the slugs and the ambient coolant was varied. From the test matrix experiments with 0 resp. 2% density difference between the de-borated slugs and the ambient coolant were used to validate the CFD software ANSYS CFX. To model the effects of turbulence on the mean flow a higher order Reynolds stress turbulence model was employed and a mesh consisting of 6.4 million hybrid elements was utilized. Only the experiments and CFD calculations with modeled density differences show stratification in the downcomer. Depending on the degree of density differences the less dense slugs flow around the core barrel at the top of the downcomer. At the opposite side, the lower borated coolant is entrained by the colder safety injection water and transported to the core. The validation proves that ANSYS CFX is able to simulate appropriately the flow field and mixing effects of coolant with different densities.  相似文献   

10.
Inspections of existing nuclear power plants have pointed out the possibility that small break loss-of-coolant accidents (SBLOCAs) could be initiated by a small break located in the upper head (UH) of the reactor pressure vessel (RPV). Such type of breaks has been the subject of investigation in some of the tests carried out in the framework of the OECD/NEA ROSA test program for safety research and safety assessment of light water reactors. The ROSA/LSTF test facility simulates a Westinghouse design PWR with a four-loop configuration and 3423 MWth. Areas, volumes and power are scaled down by a factor of 1:48 while the elevations are kept at full height. Only two loops, sized to conserve the volume scaling (2:48), are simulated. The present paper is focused on test 6-1 that simulated a RPV upper head SBLOCA with a break size equivalent to 1.9% cold leg break. The experiment assumes a total failure of the high pressure injection system (HPIS) and a loss of off-site power concurrent with the scram. The main purpose of the present study is the assessment of the capabilities of the best estimate system code, TRACE, to reproduce and understand the physical phenomena involved in this type of SBLOCA scenarios. Special attention was dedicated to the modelling of the leakage flows, necessary to correctly simulate the distribution of the water inventory in the primary side. In addition, the particular location of the break in test 6-1 allows the verification of the chocked flow model in the same way as for a separate-effect test.  相似文献   

11.
Steady-state CFD post-test calculations of T-junction mixing experiments are presented. The adiabatic experiments were carried out on a horizontally oriented T-junction with a straight main branch and a side branch coming in under an angle of 90°. The inner diameter of the pipes was 51 mm. Two streams of water with a different concentration of dissolved ions were mixed. The transport scalar distributions were measured by wire-mesh sensors sensible to the electrical conductivity, which is proportional to the concentration. Calculations were performed with ANSYS-CFX-10 using the k-?, SST and BLS Reynolds stresses models. It was found that both turbulent mixing and turbulent momentum transport downstream of the side-branch connection are underestimated by all three models. In the consequence, calculated transport scalar and velocity profiles are less uniform than the measured ones, especially at higher distances. Concerning the mixing, a decrease of the turbulent Schmidt number improves the agreement, although some qualitative discrepancies remain evident. Better results were obtained by increasing of the model coefficient Cμ in the k-? model, leading to an improvement of both concentration and velocity profiles.  相似文献   

12.
The object of this work is to investigate fluid mixing phenomena as they related to pressurized thermal shock (PTS) in a pressurized water reactor vessel downcomer during transient cooldown with direct vessel injection (DVI), using test models. The test model designs were based on ABB Combustion Engineering (CE) System 80+ reactor geometry. A cold-leg, small-break loss-of-coolant accident (LOCA) and a main steam line break were selected as the potential PTS events for the ABB-CE System 80+. This work consists of two parts. The first part provides the visualization tests of the fluid mixing between DVI fluids and existing coolant in the downcomer region, and the second part presents the results of thermal mixing tests with DVI in the other test model. Flow visualization tests with DVI have clarified the physical interaction between DVI fluid and primary coolant during transient cooldown. A significant temperature drop was observed in the downcomer during the tests of a small-break LOCA. The measured transient temperature profiles compare well with the predictions from the REMIX code for a small-break LOCA, and with the calculations from the COMMIX-1B code for a stream line break event.  相似文献   

13.
This paper reports about experimental and analytical results of a first series of three thermal mixing experiments at HDR with high-pressure cold water injection (20°C) of a complete 3-D, large scale, thick-walled PV at 11 MPa. This experimental setup leads to a localized, stripe-like asymmetric cooldown of downcomer and vessel wall for the conditions examined. With respect to this asymmetric thermal loading, a first unique data set of wall temperatures and surface strains has been generated as decision basis for code validations and future fracture mechanic oriented HDR experiments. The paper summarizes the experimental results of the Preliminary Test Phase of HDR TEMB (thermal mixing experiments) consisting of the three experiments T32.15, T32.17 and T32.18.Major findings with respect to fluid mixing behavior, the decrease of fluid/wall temperature in the HPI-nozzle/cold leg region, the cold leg nozzle and along the downcomer are reported. Also, transient axial and azimuthal strains and deduced stresses at the inside RPV surface are reported in- and outside the plume. In addition, comparisons between measured data and blind pretest predictions by best-estimate codes COMMIX-1B and SOLA-PTS as well as engineering models REMIX, VOLMIX and JETMIX are presented and discussed. Measured strains and stresses are compared with VISA predictions at different axial positions.  相似文献   

14.
The rig of safety assessment (ROSA)-III facility is a volumetrically scaled (1/424) boiling water reactor (BWR/6) system with an electrically heated core designed for integral loss-of-coolant accident (LOCA) and emergency core cooling system (ECCS) tests. Break location effects on thermal-hydraulics during intermediate LOCAs were investigated by using four experiments at the ROSA-III, the 15 and 25% main recirculation pump suction line break (MRPS-B) experiments, the 21% single-ended jet pump drive line break (JPD-B) experiment and the 15% main steam line break (MSL-B) experiment. Water injection from the high pressure core spray (HPCS) was not used in any of the experiments. Failure of ECCS actuation by the high containment pressure was also assumed in the tests.

In the MRPS-B experiments, the discharge flow turned from low quality fluid to high quality fluid when the downcomer water level dropped to the main recirculation line outlet elevation, which suppressed coolant loss from the vessel and the core. In the JPD-B experiment, the jet pump drive nozzle was covered with low quality fluid and low quality fluid discharge continued even after the downcomer water level reached the jet pump suction elevation. Low quality fluid discharge ceased after the ADS actuation. It suggestes that the JPD-B LOCA has the possibility of causing larger and more severe core dryout and cladding temperature excursion than the MRPS-B LOCA. The MSL-B LOCA was characterized by mixture level swell in the downcomer and the core. The core mixture level swell resulted in the much later core dryout initiation than that in the MRPS-B LOCA, however, ECCS actuation was also delayed because of slow downcomer water level drop.  相似文献   

15.
For the validation of computational fluid dynamics (CFD) codes, experimental data on fluid flow parameters with high resolution in time and space are needed.Rossendorf Coolant Mixing Model (ROCOM) is a test facility for the investigation of coolant mixing in the primary circuit of pressurized water reactors. This facility reproduces the primary circuit of a German KONVOI-type reactor. All important details of the reactor pressure vessel are modelled at a linear scale of 1:5. The facility is characterized by flexible possibilities of operation in a wide variety of flow regimes and boundary conditions. The flow path of the coolant from the cold legs through the downcomer until the inlet into the core is equipped with high-resolution detectors, in particular, wire mesh sensors in the downcomer of the vessel with a mesh of 64 × 32 measurement positions and in the core inlet plane with one measurement position for the entry into each fuel assembly, to enable high-level CFD code validation. Two different types of experiments at the ROCOM test facility have been proposed for this purpose. The first proposal concerns the transport of a slug of hot, under-borated condensate, which has formed in the cold leg after a small break LOCA, towards the reactor core under natural circulation. The propagation of the emergency core cooling water in the test facility under natural circulation or even stagnant flow conditions should be investigated in the second type of experiment. The measured data can contribute significantly to the validation of CFD codes for complex mixing processes with high relevance for nuclear safety.  相似文献   

16.
Downcomer fluid velocity, shell, fluid, and tube sheet temperature, and feedwater distributions across the cold and hot legs of Paluel 1 steam generator No. 81 are measured as a function of load. The results indicate that swirling motion in the downcomer is negligible compared with results reported earlier for the PWRs Bugey 4 and Tricastin 1. Overall circulation ratio and saturation pressure decrease almost linearly with increasing load. Carry- under and carryover are found negligible at all loads. A nonuniformly drilled feedwater ring distributes 80% of the feedwater onto the hot leg and 20% onto the cold leg. The combination of hydrocyclonic steam-water separator dryer design and nonuniformly drilled feedwater ring is successful in retaining a high percentage ( 70%) of the rather pure (compared with recirculation water) feedwater at tube sheet level across the hot leg, even at full load. Consequently, chemical quality, and turbidity level of secondary water above the tube sheet in the hot leg is found superior to that in the cold leg.  相似文献   

17.
Three-dimensional simulations of gas-liquid flow in the bubble column using the Euler-Euler approach is presented. The attempt is made to assess the performance and applicability of different turbulence models namely, k-?, k-? RNG, k-ω, Reynolds stress model (RSM) and large eddy simulation (LES) using a commercial code (ANSYS-CFX). For this purpose, the predictions are compared against the experimental data of Kulkarni et al. (2007). Performance of the turbulence models is assessed on basis of comparison of axial liquid velocity, fractional gas hold-up, turbulent kinetic energy and turbulent eddy dissipation rate. All the non-drag (turbulent dispersion, virtual mass and lift force) and drag force were incorporated in the model. The low-Reynolds number treatment of the k-ω yields a better qualitative prediction than the k-? model. The RSM predictions are comparable with LES results and seemed to give better prediction near the sparger, where the flow is more anisotropic and gives a clue why RANS approaches fails to predict the flow in this region. However, the large eddy simulations showed good agreement with the experimental data, but requires higher computational time than RSM.  相似文献   

18.
The simulation of turbulent flows is an ongoing challenge. This is especially true for the flows in the nuclear reactors. In order to save computational time and resource, accurate numerical schemes are required for such simulations. The encouraging results from the laminar flow simulations using modified nodal integral method (MNIM), serves as a motivation to use the method for turbulent flow simulations. The k-? model in this work has been implemented using the MNIM formulation. Two models, one for low Reynolds number and one for high Reynolds number, are implemented. The application of the model to relatively simple problems shows that results are good and similar to what one would expect from the k-? model implementation with any other numerical scheme. The results are compared with the DNS data from various sources in the literature. The difference between the DNS data and current implementation arises mainly from the assumption made in the k-? model rather than the choice of the numerical scheme in the present work. It is seen that very coarse grids can be used away from the walls for the present simulation. This is especially true for low Reynolds number model. Hence, MNIM formulation for the k-? model promises to reduce the over all computational cost.  相似文献   

19.
Accurate prediction of interfacial drag in the downcomer annulus is crucial for the assessment of downcomer void fraction for the loss of coolant accident analysis. The downcomer annulus is the gap between reactor pressure vessel (RPV) exterior and the inner wall of pressure containment vessel (PCV). Based on the previous research, occurrence of the nonuniform two-phase flow in downcomer section is reported, which is partly due to the large wall temperature difference between RPV exterior and the inner wall of PCV. In RELAP5, interfacial drag term in downcomer section is calculated using Kataoka–Ishii and churn-turbulent drift–flux correlations. It has been pointed out that this traditional calculation approach for calculating downcomer void fraction needs modification. The purpose of the current study is to assess the behaviors of drift–flux parameters in downcomer section and to propose an improved distribution parameter model that is suitable for donwcomer boiling analysis.  相似文献   

20.
A CFD modeling and simulation process for large-scale problems using an arbitrary fast reactor fuel assembly design was evaluated. Three-dimensional flow distributions of sodium for several fast reactor fuel assembly pin spacing configurations were simulated on high performance computers using commercial CFD software. This research focused on 19-pin fuel assembly “benchmark” geometry, similar in design to the Advanced Burner Test Reactor, where each pin is separated by helical wire-wrap spacers. Several two-equation turbulence models including the k-? and SST (Menter) k-ω were evaluated. Considerable effort was taken to resolve the momentum boundary layer, so as to eliminate the need for wall functions and reduce computational uncertainty. High performance computers were required to generate the hybrid meshes needed to predict secondary flows created by the wire-wrap spacers; computational meshes ranging from 65 to 85 million elements were common. A general validation methodology was followed, including mesh refinement and comparison of numerical results with empirical correlations. Predictions for velocity, temperature, and pressure distribution are shown. The uncertainty of numerical models, importance of high fidelity experimental data, and the challenges associated with simulating and validating large production-type problems are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号