首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorosulfonated polyethylene (CSPE) is a widely used elastomer because of the resistance to gases and aggressive chemicals, fire‐retarding, and electric insulating properties. Silica nanoparticles were usually introduced into the elastomer to improve its critical properties. However, there were some problems of strong aggregation and poor dispersion of nanoparticles in the nanocomposites. In this work, an efficient approach of grafting matrix CSPE onto silica surface was proposed to solve the problems. CPSE‐g‐SiO2 nanoparticles were prepared via an in situ radical reaction between  Cl in CSPE and Si OH on silica surface under ultrasonics. The successful chemical graft reaction was confirmed using Fourier transform infrared, ultraviolet–visible spectroscopy, 1H‐NMR, and X‐ray photoelectron spectroscopy. Thermogravimetric analysis indicated that the grafting amount of CSPE was 4.68 wt%. Grafting CSPE onto silica surface significantly improved the dispersion of CSPE‐g‐SiO2 nanoparticles in CSPE matrix and the interfacial interaction. Therefore, the mechanical, thermal stability, damping capacity, and rheology properties of CSPE/CSPE‐g‐SiO2 nanocomposites were improved. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

2.
Summary: To obtain a balance between toughness (as measured by notched impact strength) and elastic stiffness of poly(butylene terephthalate) (PBT), a small amount of tetra‐functional epoxy monomer was incorporated into PBT/[ethylene/methyl acrylate/glycidyl methacrylate terpolymer (E‐MA‐GMA)] blends during the reactive extrusion process. The effectiveness of toughening by E‐MA‐GMA and the effect of the epoxy monomer were investigated. It was found that E‐MA‐GMA was finely dispersed in PBT matrix, whose toughness was significantly enhanced, but the stiffness decreased linearly, with increasing E‐MA‐GMA content. Addition of 0.2 phr epoxy monomer was noted to further improve the dispersion of E‐MA‐GMA particles by increasing the viscosity of the PBT matrix. While use of epoxy monomer had little influence on the notched impact strength of the blends, there was a distinct increase in the elastic stiffness. SEM micrographs of impact‐fracture surfaces indicated that extensive matrix shear yielding was the main impact energy dissipation mechanism in both types of blends, with or without epoxy monomer, and containing 20 wt.‐% or more elastomer.

SEM micrographs of freeze‐fractured surfaces of PBT/E‐MA‐GMA blend illustrating the finer dispersion of E‐MA‐GMA in the presence of epoxy monomer.  相似文献   


3.
In this article, the surface of SiO2 nanoparticles was modified by silane coupling agent N‐(2‐aminoethyl)‐γ‐aminopropylmethyl dimethoxy silane. The bismaleimide nanocomposites with surface‐modified SiO2 nanoparticles or unmodified SiO2 nanoparticles were prepared by the same casting method. The tribological performance of the nanocomposites was studied on an M‐200 friction and wear tester. The results indicated that the addition of SiO2 nanoparticles could decrease the frictional coefficient and the wear rate of the composites. The nanocomposites with surface‐modified SiO2 nanoparticles showed better wear resistance and lower frictional coefficient than that with the unmodified nanoparticles SiO2. The specific wear rate and the steady frictional coefficient of the composite with 1.0 wt % surface‐modified SiO2 nanoparticles are only 1.8 × 10?6 mm3/N m and 0.21, respectively. The dispersion of surface‐modified SiO2 nanoparticles in resin matrix was observed with transmission electron microscope, and the worn surfaces of pure resin matrix and the nanocomposites were observed with scanning electron microscope. The different tribological behavior of the resin matrix and the filled composites should be dependent on their different mechanical properties and wear mechanism. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Blends of recycled poly(butylene terephthalate) (PBT) parts obtained from scrapped cars, and virgin polypropylene (PP), were prepared in a twin‐screw extruder at different compositions. Selected compositions were also prepared with the presence of ethylene‐co‐glycidyl methacrylate copolymer (E‐GMA) and ethylene/methyl acrylate/glycidyl methacrylate terpolymer (E‐MA‐GMA) compatibilizers. The effect of the composition and the type of compatibilizer, as well as the mixing conditions, on the morphology phase, thermal, viscoelastic behavior, and mechanical properties of the blends has been investigated. Blends PP/PBT of various composition exhibit a coarse morphology and a poor adherence between both phases, resulting in the decrease of ductility, whereas at weak deformation, PBT reinforced the tensile properties of PP. Addition of E‐GMA and E‐MA‐GMA to the PP/PBT blend exhibited a significant change in morphology and improved ductility because of interfacial reactions between PBT end chains and epoxy groups of GMA that generate EG‐g‐PBT copolymer. Moreover, thermal and viscoelastic study indicated that the miscibility of PP and PBT has been improved further and the reactions were identified. The E‐MA‐GMA results in the best improvement of ductility. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

5.
Potentially reactive blends of styrene–maleic anhydride (SMAH) with ethylene/methyl acrylate/glycidyl methacrylate (E‐MA‐GMA) and nonreactive blends of SMAH with ethylene/methyl acrylate (E‐MA) were produced in a Brabender batch mixer and in a corotating twin‐screw extruder. The products were characterized in terms of rheology, morphology, and mechanical properties to understand the reaction characteristics between anhydride/epoxy functional groups. Storage modulus, G′, loss modulus, G″ and complex viscosity, η* of the reactive blends were higher than those of nonreactive ones. At 25% E‐MA‐GMA content, maximum in η* was obtained for the reactive blends. The reactive blends showed finer morphology than the nonreactive ones at all concentrations studied. Mechanical characterization showed that reactive SMAH/E‐MA‐GMA blends had higher tensile strength, % strain at break, and tensile modulus than the nonreactive blends for all corresponding modified polyethylene contents. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 790–797, 2001  相似文献   

6.
Poly(L ‐lactide) (PLA)/silica (SiO2) nanocomposites containing 1, 3, 5, 7, and 10 wt % SiO2 nanoparticles were prepared by melt compounding in a Haake mixer. The phase morphology, thermomechanical properties, and optical transparency were investigated and compared to those of neat PLA. Scanning electron microscopy results show that the SiO2 nanoparticles were uniformly distributed in the PLA matrix for filler contents below 5 wt %, whereas some aggregates were detected with further increasing filler concentration. Differential scanning calorimetry analysis revealed that the addition of SiO2 nanoparticles not only remarkably accelerated the crystallization speed but also largely improved the crystallinity of PLA. An initial increase followed by a decrease with higher filler loadings for the storage modulus and glass‐transition temperature were observed according to dynamic mechanical analysis results. Hydrogen bonding interaction involving C?O of PLA with Si? OH of SiO2 was evidenced by Fourier transform infrared analysis for the first time. From the mechanical tests, we found that the tensile strength and modulus values of the nanocomposites were greatly enhanced by the incorporation of inorganic SiO2 nanoparticles, and the elongation at break and impact strength were slightly improved. The optical transparency of the nanocomposites was excellent, and it seemed independent of the SiO2 concentration; this was mainly attributed to the closed refractive indices between the PLA matrix and nanofillers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
The silica nanoparticles functionalized with poly(butyl acrylate‐co‐glycidyl methacrylate)‐g‐diaminodiphenyl sulfone (P(BA‐co‐GMA)‐g‐DDS)) were prepared via atom transfer radical polymerization and ring open reaction, and characterized by Fourier transform infrared and X‐ray photoelectron spectroscopy. Subsequently, the influence of SiO2 content on the mechanical and thermal properties for the bismaleimide (BMI) resin nanocomposites modified with pristine SiO2 and SiO2‐P(BA‐co‐GMA)‐g‐DDS) was investigated. It was found that SiO2‐P(BA‐co‐GMA)‐g‐DDS) was more effective as a modifier than pristine SiO2. The most significant improvement of the impact strength (+108.7%) and flexural strength (+64.5%) was obtained with SiO2‐P(BA‐co‐GMA)‐g‐DDS) at 0.5 wt% content. Moreover, the thermal properties of nanocomposites were distinctly improved with the addition of functionalized SiO2. The reasons for these changes were discussed in this article. POLYM. COMPOS., 34:2154–2159, 2013. © 2013 Society of Plastics Engineers  相似文献   

8.
Polystyrene/organoclay nanocomposites were prepared by melt intercalation in the presence of elastomeric impact modifiers. Three different types of organically modified montmorillonites; Cloisite® 30B, 15A, and 25A, were used as reinforcement, whereas poly [styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS‐g‐MA) and poly(ethylene‐b‐butyl acrylate‐b‐glycidyl methacrylate) (E‐BA‐GMA) elastomeric materials were introduced to act as impact modifier. Owing to its single aliphatic tail on its modifier and absence of hydroxyl groups, Cloisite® 25A displayed the best dispersion in the polystyrene matrix, and mostly delaminated silicate layers were obtained in the presence of SEBS‐g‐MA. This was attributed to the higher viscosity of SEBS‐g‐MA compared with both E‐BA‐GMA and poly(styrene‐co‐vinyloxazolin) (PS). In addition, the compatibility between SEBS‐g‐MA and PS was found to be better in comparison to the compatibility between E‐BA‐GMA and PS owing to the soluble part of SEBS‐g‐MA in PS. The clay particles were observed to be located mostly in the dispersed phase leading to larger elastomeric domains compared with binary PS/elastomer blends. The enlargement of the elastomeric domains resulted in higher impact strength values in the presence of organoclay. Good dispersion of Cloisite® 25A in PS/SEBS‐g‐MA blends enhanced the tensile properties of this nanocomposite produced. It was observed that the change in the strength and stiffness of the ternary nanocomposites mostly depend on the type of the elastomeric material. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Poly(vinyl chloride) (PVC)/SiO2 nanocomposites were prepared via melt mixture using a twin‐screw mixing method. To improve the dispersion degree of the nanoparticles and endow the compatibility between polymeric matrix and nanosilica, SiO2 surface was grafted with polymethyl methacrylate (PMMA). The interfacial adhesion was enhanced with filling the resulting PMMA‐grafted‐SiO2 hybrid nanoparticles characterized by scanning electron microscopy. Both storage modulus and glass transition temperature of prepared nanocomposites measured by dynamic mechanical thermal analysis were increased compared with untreated nanosilica‐treated PVC composite. A much more efficient transfer of stresses was permitted from the polymer matrix to the hybrid silica nanoparticles. The filling of the hybrid nanoparticles caused the improved mechanical properties (tensile strength, notched impact strength, and rigidity) when the filler content was not more than 3 wt %. Permeability rates of O2 and H2O through films of PMMA‐grafted‐SiO2/PVC were also measured. Lower rates were observed when compared with that of neat PVC. This was attributed to the more tortuous path which must be covered by the gas molecules, since SiO2 nanoparticles are considered impenetrable by gas molecules. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Poly(lactic acid) (PLA)/SiO2 nanocomposites were prepared via melt mixing with a Haake mixing method. To improve the dispersion of nanoparticles and endow compatibility between the polymer matrix and nanosilica, SiO2 was surface‐modified with oleic acid (OA). The interfacial adhesion of the PLA nanocomposites was characterized by field‐emission scanning electron microscopy. The storage modulus and glass‐transition temperature values of the prepared nanocomposites were measured by dynamic mechanical thermal analysis. The linear and nonlinear dynamic rheological properties of the PLA nanocomposites were measured with a parallel‐plate rheometer. The effects of the filling content on the dispersability of the OA–SiO2 nanoparticles in the PLA matrix, the interface adhesion, the thermomechanical properties, the rheological properties, and the mechanical properties were investigated. Moreover, the proper representation of the oscillatory viscometry results provided an alternative sensitive method to detect whether aggregation formed in the polymeric nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
The nylon 66‐based nanocomposites containing two different surface‐modified and unmodified SiO2 nanoparticles were prepared by melt compounding. The interface structure formed in different composite system and their influences on material mechanical properties were investigated. The results indicated that the interfacial interactions differed between composite systems. The strong interfacial adhesion helped to increase tensile strength and elastic modulus of composites; whereas, the presence of modification layer in silica surface could enhance the toughness of composites, but the improvement of final material toughness was also correlated with the density of the adhered nylon 66 chains around silica nanoparticles. In addition, the results also indicated that the addition of surface‐modified silica nanoparticles has a distinct influence on the nonisothermal crystallization behavior of the nylon 66 matrix when compared with the unmodified silica nanoparticle. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Elastomer nanocomposites reinforced with carbon nanofiber (CNF) decorated with metal nanoparticles exhibit excellent thermal, mechanical, and magnetic properties with low volume fraction of the reinforcement. Generally, metal nanoparticles are used to modify the surface of CNF, to improve their dispersion and contact resistance in the polymer matrix. In this study, Fe2O3 metal nanoparticles were decorated on CNF by electrostatic attraction via a green and facile solution‐based method. Interestingly, the CNF decorated with Fe2O3 (CNF‐Fe2O3)/elastomer improved both the tensile strength and the fatigue property of plain CNF/elastomer by as much as 57.2% and 27.2%, respectively. Moreover, the CNF‐Fe2O3/elastomer exhibited superior thermal conductivity, a twofold enhancement compared with carbon fibers. The elastomer nanocomposites consisting of CNF‐Fe2O3 also exhibited enhanced magnetic properties due to synergies between the Fe2O3 nanoparticles and the CNF. The elastomer nanocomposites prepared with CNF‐Fe2O3 will open significant new opportunities for preparing advanced elastomer nanocomposites for future engineering applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45376.  相似文献   

13.
The distribution of maleated styrene‐hydrogenated butadiene‐styrene (mSEBS) elastomer and nano‐SiO2 in nylon 6 matrix was controlled by varying the blending procedure. Nano‐SiO2 particles with different surface properties (hydrophilic versus hydrophobic) were adopted to adjust their interactions with other components. Two different structures, separate dispersion of nano‐SiO2 and elastomer particles as well as encapsulation of nano‐SiO2 fillers by the elastomer, were obtained. The structures were confirmed through scanning electron microscope (SEM) investigation. The mechanical measurement results showed that the microstructure and the interactions among the components had dramatic influences on the final mechanical properties, especially Izod fracture toughness, for the ternary nanocomposites. The nanocomposites containing hydrophilic nano‐SiO2 had better mechanical performances compared with the composites filled with hydrophobic SiO2 when they were in the same microstructure. The nanocomposites with separate dispersion structure showed higher stiffness compared with those of encapsulation type. However, the separately dispersed nano‐SiO2 particles restricted the cavitation of elastomer phases that led to low toughening effectiveness. The difference of cavitation intensity for elastomer phase was revealed by SEM investigation on the facture surfaces for the nanocomposites with the two different microstructures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Dynamically vulcanized Nylon 1010/ethylene‐vinyl acetate rubber (EVM)/SiO2 nanocomposites were prepared. Maleic anhydride grafted ethylene‐vinyl acetate copolymer (EVA‐g‐MA) and nano‐silica (SiO2) was used as a compatibilizer and a filler, and silane coupling agent (KH550, 3‐triethoxysilylpropylamine) was used to improve the dispersion of SiO2 in the nanocomposites. The nanocomposites were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic mechanical analysis (DMA), differential scanning calorimeter (DSC), and rheology analysis and mechanical properties test. SEM and AFM images showed that the compatibility between Nylon 1010 and EVM was improved by adding the compatibilizer. An increase in SiO2 content and the addition of the compatibilizer led to an increase in the tensile strength of the nanocomposite. A nanocomposite based on Nylon 1010/EVM/DCP (30/70/0.8) with tensile strength of 16.3 MPa and elongation at break of 180% was obtained by the addition of 15 phr EVA‐g‐MA and 40 phr SiO2. The non‐isothermal crystallization processes of Nylon/EVM blend were investigated by DSC. It was observed that EVM rubber could act as heterogeneous nuclei for Nylon which was more effective in Nylon/EVM/DCP blend than in Nylon/EVM blend. POLYM. ENG. SCI., 55:581–588, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
In this study, a commercially available nano‐sized silica (SiO2) was surface‐modified via esterification with oleic acid (OA), a relatively inexpensive and hydrophobic modifier. The surface‐modified silica (SiO2‐OA) nanoparticles were used to disperse in the poly(amic acid) solutions of a commercial polyimide (PI), used for two‐layer film, and thermally imidized to form a series of PI/silica nanocomposites. The effects of the addition of SiO2‐OA nanoparticles on the properties of the as‐prepared PI/silica nanocomposites were studied. The results indicated that the as‐prepared PI/silica nanocomposites exhibited improvements in the dynamic mechanical property, thermal stability, water resistance, and thermal expansion. POLYM. COMPOS. 28:575–581, 2007. © 2007 Society of Plastics Engineers  相似文献   

16.
A tough hybrid hydrogel has been developed by dual in situ sol–gel reaction of γ-ethacryloxypropyltrimethoxysilane (MPTMS) and tetrabutyl titanate, as well as in situ radical polymerization of acrylamide (AM) and MPTMS. In this hydrogel, covalently bonded SiO2 and TiO2 nanoparticles were used as inorganic filler and multifunctional crosslinker. Nano-TiO2 was bonded onto the surface of SiO2 by forming Ti O Si bonds and SiO2 bonded with polymer chains by the formation of C O Si bonds, which were confirmed by Fourier transform infrared and X-ray photoelectron spectroscopy technology. Transmission electron microscopy images revealed that SiO2 and TiO2 tended to construct a distinct rod-like structure in poly(AM) matrix. This specific microstructure enhanced the mechanical properties of hydrogel. The compressive stress of the gel reached up to 9.49 MPa, and the compressive fracture energy was as high as 5307.73 J m−2. This strategy provided a probable method for the preparation of tough soft materials with potential applications in chemical machinery and actuators. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47742.  相似文献   

17.
Polyurethane elastomer (PUE) was firstly applied to mining coal roadway as air‐leak sealant. It is very important for air‐leak sealants to possess the super mechanical properties and good flame retardant performance when applied to the coal‐rock mass with cracks. The reinforced and toughened PUE nanocomposites were obtained by adding surface modified TiO2 and SiO2 nanoparticles. The modified PUE was characterized in terms of morphology, structure, and thermal stability by field‐emission scanning electron microscopy (FESEM), X‐ray diffraction (XRD), infrared spectroscopy (IR), and thermogravimetric analysis (TGA). Its flame‐retardant performance and mechanical properties were also tested. The results showed that the surface modified nanoparticles were uniformly dispersed in the PUE matrix and enhanced its thermal stability and flame retardant performance. The dual effects of uniform dispersion of nanoparticles and hydrogen bonding between nanoparticles and PUE improved the mechanical properties of the composites. The PUE modified by nanoparticles was successfully applied to coal mines and showed great air‐leak sealing effect. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
The effects of organoclay type, compatibilizer, and the addition order of components during melt‐blending process on the morphology and thermal, mechanical, and flow properties of ternary nanocomposites based on low‐density polyethylene (LDPE) were investigated. As a compatibilizer, ethylene/methyl acrylate/glycidyl methacrylate (E‐MA‐GMA), as organoclays Cloisites® 15A, 25A, and 30B were used. All samples were prepared by a corotating twin screw extruder, followed by injection molding. The highest increase of the basal spacing for ternary nanocomposites was obtained in LDPE/E‐MA‐GMA/Cloisite® 30B nanocomposites with interlayer spacing of 59.2 Å. Organoclay and compatibilizer addition did not influence the melting/crystallization behavior of the compositions, and both compatibilizer and organoclays had no significant nucleation activity in LDPE. Among the ternary nanocomposites, the maximum increase in tensile strength and tensile modulus values was observed for nanocomposites containing organoclay Cloisite® 15A. The improvement with respect to neat LDPE was 43% for tensile strength and 44% for tensile modulus. According to the mechanical analysis, the best sequence of component addition was the one in which LDPE, organoclay, and compatibilizer were simultaneously fed to the extruder in the first run, and the product of the first run was extruded once more. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
In this study, free‐volume effects on the thermal and mechanical properties of epoxy–SiO2 nanocomposites were investigated. SiO2 particles ranging from 15 nm to 2 µm were used, and the nature of the matrix–filler interphase was modified by surface grafting. Nanoparticles 15 nm in diameter yielded an increase in the glass‐transition temperature (Tg) of the composites up to 5 °C; at the same time, they increased the storage modulus (E′) from 2340 to 2725 MPa. Conversely, large particles markedly decreased both Tg and E′; this suggested the pivotal role of nanoparticle size on the final properties of the nanocomposite. The functionalization of SiO2 nanoparticles markedly improved their dispersion within the epoxy matrix. The positron annihilation lifetime spectroscopy results indicate that the free volume strongly depended on the interphase. These experimental findings obtained here could be extrapolated to industrially relevant nanocomposites and could provide a rationale for the comprehension of free‐volume effects on the thermal and mechanical properties of nanocomposite materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45216.  相似文献   

20.
The effects of SiO2 nanoparticles on the performance of carboxyl‐randomized liquid butadiene–acrylonitrile rubber (CRBN) modified epoxy resin (EP) nanocomposites were studied. With the addition of an appropriate amount of SiO2 (2%) to EP/CRBN (95/5), the nanocomposites could achieve the desired impact strength and modulus. The morphology of the nanocomposites was studied with scanning electron microscopy and transmission electron microscopy. The nanocomposites showed a three‐phase system; both the rubber particles and SiO2 nanoparticles showed uniform dispersions in the EP matrix, with their phases all nanosized. A good correlation between the free‐volume hole radius and mechanical properties was found. The introduction of a small amount of nanoparticles (both rubber and SiO2) into EP led to the formation of interactions between the EP and nanoparticles. The interactions restricted the segment motion and the mobilization of the EP chains and then reduced the free‐volume concentration in the amorphous region of EP. The fact that the average free‐volume hole radius of EP/CRBN was larger than that of pure EP was mainly attributed to the contribution of the larger size of the free‐volume holes within the rubber phase. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号