首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
聚苯乙烯大单体和丙烯酸辛酯的规整接枝共聚物   总被引:2,自引:1,他引:2  
采用聚苯乙烯大单体和丙烯酸辛酯进行自由基溶液共聚合反应,得到规整接枝共聚物。产物通过萃取法提纯后,用IR表征其结构。研究了共聚合反应条件:聚苯乙烯大单体的投料质量分数,引发剂用量,反应温度对接枝效率的影响;并测定了丙烯酸辛酯在不同反应时间的竞聚率,接枝共聚物的稀溶液性质以及物理机械性能。结果表明,当聚苯乙烯大单体的投料质量分数在40%左右时,此接枝共聚物是一种性能良好的热塑性弹性体。  相似文献   

2.
用傅里叶变换红外光谱、透射电子显微镜和差示扫描量热仪表征了聚苯乙烯大单体和丙烯酸辛酯规整接枝共聚物(POA-g-PS)的结构,测定了其物理机械性能,并研究了POA-g-PS作为聚苯乙烯/丙烯酸酯橡胶体系的共混增容剂时,共混物组成、接枝物用量及接枝物组成对共混物物理机械性能的影响。结果表明,POA-g-PS属于两相态,存在微观相分离结构;当聚苯乙烯大单体的质量分数在40%左右时,POA-g-PS是一种具有较大拉伸强度、较大扯断伸长率及较小永久变形的热塑性弹性体;扫描电镜和差示扫描量热分析表明接枝共聚物促进了聚苯乙烯/丙烯酸酯橡胶共混体系的互容,起到了增容剂的作用。  相似文献   

3.
The grafting of the methyl methacrylate (MMA) monomer onto natural rubber using potassium persulfate as an initiator was carried out by emulsion polymerization. The rubber macroradicals reacted with MMA to form graft copolymers. The morphology of grafted natural rubber (GNR) was determined by transmission electron microscopy and it was confirmed that the graft copolymerization was a surface‐controlled process. The effects of the initiator concentration, reaction temperature, monomer concentration, and reaction time on the monomer conversion and grafting efficiency were investigated. The grafting efficiency of the GNR was determined by a solvent‐extraction technique. The natural rubber‐g‐methyl methacrylate/poly(methyl methacrylate) (NR‐g‐MMA/PMMA) blends were prepared by a melt‐mixing system. The mechanical properties and the fracture behavior of GNR/PMMA blends were evaluated as a function of the graft copolymer composition and the blend ratio. The tensile strength, tear strength, and hardness increased with an increase in PMMA content. The tensile fracture surface examined by scanning electron microscopy disclosed that the graft copolymer acted as an interfacial agent and gave a good adhesion between the two phases of the compatibilized blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 428–439, 2001  相似文献   

4.
含规整 PMMA支链的 PBA合成及其力学性能   总被引:1,自引:0,他引:1  
研究了聚甲基丙烯酸甲酯大单体与丙烯酸丁酯在苯中的共聚,该大单体由甲基丙烯酸甲酯在巯基乙酸链转移剂存在下聚合,用甲基烯酸缩不甘油酯封端,研究了共聚速率、大单体相对分子质量、大单体与小单体投料比、引发剂用量、单体浓度及共聚温度对接枝效率及共聚物相对分子质量的影响。用分级沉淀法精制共聚物。用凝胶渗透色谱法、红外光谱法及差示扫描量热法对共聚物进行表征,用蒸汽压式渗透压力计及膜渗透压测定了结构参数,结果表明,平均接枝数随转化率增加而降低,在一定的组成范围内,共聚物呈热塑性弹性体行为。  相似文献   

5.
A two‐step procedure was used to synthesize the cellulose acetate butyrate and poly(ethylene glycol) graft copolymer (CAB‐g‐PEG). By choosing the appropriate composition, the crosslinked graft copolymer or not could be obtained. Then, the CAB‐g‐PEG copolymer was blended with poly(3‐hydroxybutyrate) (PHB), to further improve the mechanical properties of PHB. The results indicated that PHB and CAB‐g‐PEG that were not crosslinked were miscible over the entire composition range. As the CAB‐g‐PEG copolymer increased in the PHB/CAB‐g‐PEG blends, the melting temperature of the blends decreased, the crystallization of PHB became more difficult, and the crystallinity of the blend and PHB phase all decreased. The tensile properties and impact strength of the PHB/CAB‐g‐PEG blends were superior to the PHB/CAB blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1471–1478, 2006  相似文献   

6.
A novel redox system, potassium diperiodatocuprate [Cu (III)–chitosan], was employed to initiate the graft copolymerization of methyl acrylate (MA) onto chitosan in alkali aqueous solution. The effects of reaction variables such as monomer concentration, initiator concentration, pH and temperature were investigated. By means of a series of copolymerization reactions, the grafting conditions were optimized. Cu (III)–chitosan system was found to be an efficient redox initiator for this graft copolymerization. The structures and the thermal stability of chitosan and chitosan‐g‐poly(methyl acrylate) (PMA) were characterized by infrared spectroscopy (IR) and thermogravimetric analysis (TGA). In this article, a mechanism is proposed to explain the formation of radicals and the initiation. Finally, the graft copolymer was used as the compatibilizer in blends of poly(vinyl chloride) (PVC) and chitosan. The scanning electron microscope (SEM) photographs and differential scanning calorimetry (DSC) thermograms indicate that the graft copolymer improved the compatibility of the blend. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2283–2289, 2003  相似文献   

7.
Graft copolymerization of SBS in the form of sodium ionomer with acrylamide in emulsion using benzoyl peroxide as initiator and sodium ionomer of maleated SBS as a self‐emulsifier, which can form a stable cyclohexane/water emulsion with AM without using any other emulsifier, was carried out. Factors affecting the graft copolymerization were studied. The grafting % can reach about 15%. Emulsifying properties of sodium ionomer of maleated SBS and the graft copolymer, as well as the compatibilizing effect of the graft copolymer in blending polyvinyl chloride (PVC) with SBS, were studied. The sodium ionomer of maleated SBS, the graft copolymers, and the blends were characterized with IR and DSC. The results showed that water absorbency and emulsifying volume increase obviously after graft copolymerization with AM. 0.2 g of the graft copolymer containing 14 wt % PAM grafts can emulsify a mixture of 30 mL toluene and 70 mL water completely. The graft copolymer can be used as an effective compatibilizer in the blending of PVC and SBS, more effective than the sodium ionomer of maleated SBS. Only 2 wt % of the copolymer based on the blend used in blending is enough to raise the tensile strength three times. The blends with weigh ratios of PVC/SBS at 3/7–4/6 in the presence of the graft copolymer behave as thermoplastic elastomers with a tensile strength of 14 MPa, an ultimate elongation of 750%, and a permanent set of 17%. Glass transition temperatures of the blend shifted inward in the presence of the graft copolymer. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1248–1253, 2005  相似文献   

8.
To improve the mechanical properties of poly(vinyl chloride) (PVC), the possibility of combining PVC with elastomers was considered. Modification of natural rubber (NR) by graft copolymerization with methyl methacrylate (MMA) and styrene (St) was carried out by emulsion polymerization by using redox initiator to provide an impact modifier for PVC. The impact resistance, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM) of St and MMA grafted NR [NR‐g‐(St‐co‐MMA)]/PVC (graft copolymer product contents of 5, 10, and 15%) blends were investigated as a function of the amount of graft copolymer product. It was found that the impact strength of blends was increased with an increase of the graft copolymer product content. DMA studies showed that NR‐g‐(St‐co‐MMA) has partial compatibility with PVC. SEM confirmed a shift from brittle failure to ductility with an increase graft copolymer content in the blends. The mechanical properties showed that NR‐g‐(St‐co‐MMA) interacts well with PVC and can also be used as an impact modifier for PVC. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1666–1672, 2004  相似文献   

9.
A graft copolymer composed of poly (2-hydroxy ethyl acrylate) (PHEA) as branched chains and chlorinated polyethylene (CPE) as backbone, CPE-cg-HEA, was synthesized by in situ chlorinating graft copolymerization (ISCGC). The polymer has special molecular structure with short graft chains and abundant branched points. The mechanical properties of CPE-cg-HEA were studied by tensile testing, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA). The morphologies of tensile fractured surfaces for CPE and CPE-cg-HEA were investigated by scanning electron microscope (SEM). The testing results indicated the mechanical properties of the in situ chlorinating graft copolymers have greatly improved compared with CPE with about the same chlorine content. Particularly, there was a broad plateau on the stress–strain curve of the graft copolymer, which meant a high elastic-like deformation.  相似文献   

10.
In situ polymerization and in situ compatibilization was adopted for preparation of ternary PA6/PS‐g‐PA6/PS blends by means of successive polymerization of styrene, with TMI and ε‐caprolactam, via free radical copolymerization and anionic ring‐opening polymerization, respectively. Copolymer poly(St‐g‐TMI), the chain of which bears isocyanate (? NCO), acts as a macroactivator to initiate PA6 chain growth from the PS chain and graft copolymer of PS‐g‐PA6 and pure PA6 form, simultaneously. The effect of the macroactivator poly(St‐g‐TMI) on the phase morphology was investigated in detail, using scanning electron microscopy. In case of blends with higher content of PS‐g‐PA6 copolymer, copolymer nanoparticles coexisting with the PS formed the matrix, in which PA6 microspheres were dispersed evenly as minor phase. The content of the compositions (homopolystyrene, homopolyamide 6, and PS‐g‐PA6) of the blends were determined by selective solvent extraction technique. The mechanical properties of PA6/PS‐g‐PA6/PS blends were better than that of PA6/PS blends. Especially for the blends T10 with lower PS‐g‐PA6 copolymer content, both the flexural strength and flexural modulus showed significantly improving because of the improved interfacial adhesion between PS and PA6. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
A novel efficient redox system—potassium diperiodatoargentate [Ag(III)]‐chitosan—was employed to initiate the graft copolymerization of methyl acrylate (MA) onto chitosan in aqueous alkali solution. The effects of reaction variables such as monomer concentration, initiator concentration, reaction time, and temperature were investigated and the grafting conditions were optimized. The structures and the thermal stability of chitosan and chitosan‐g‐PMA were characterized by infrared spectroscopy (IR) and thermogravimetric analysis (TGA). The solubility of chitosan‐g‐PMA in some mixed solvent was tested. The graft copolymer was shown to be an effective compatibilizer in blends of poly(vinyl chloride) (PVC) and chitosan. Finally, a mechanism is proposed to explain the formation of radicals and the initiation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 799–804, 2006  相似文献   

12.
Polyacrylamide with well-defined polystyrene grafts (PAM-g-PS) and poly(methacrylic acid) with well-defined poly(methyl methacrylate) grafts (PMAA-g-PMMA) were synthesized via macromer techniques. Polymerization conditions and reactivity ratios for the copolymerizations were studied. The graft copolymers were purified by extractions and characterized with IR spectra. Structural parameters of PMAA-g-PMMA were determined by measurement of number average molecular weight of both macromers and copolymers. Both kinds of the graft copolymers are amphiphilic, exhibiting good emulsifying properties. When PAM-g-PS was mixed with PMAA-g-PMMA in a molar ratio of PAM/PMAA = 1, an intermolecular complex membrane was formed. This behaves as a chemical valve; its permeability can be controlled reversibly by changing the pH value. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
A poly(linolenic acid)‐g‐poly(tert‐butyl acrylate) graft copolymer was synthesized from polymeric linolenic acid peroxide possessing peroxide groups in the main chain by free radical polymerization of tert‐butyl acrylate. Graft copolymers having structures of poly(linolenic acid)‐g‐poly(caprolactone)‐g‐poly(tert‐butyl acrylate) were synthesized from polymeric linolenic acid, possessing peroxide groups on the main chain by the combination of free radical polymerization of tert‐butyl acrylate and ring‐opening polymerization of ε‐caprolactone in one‐pot. The obtained graft copolymers were characterized by proton nuclear magnetic resonance, gel permeation chromatography, thermal gravimetric analysis, differential scanning calorimetry, and scanning electron microscopy techniques. Furthermore, Au/n‐Si diodes were fabricated with and without poly(linolenic acid)‐g‐poly(caprolactone)‐g‐poly(tert‐butyl acrylate)‐4 to form a new interfacial polymeric layer for the purpose of investigating this polymer's conformity in electronic applications. Some main electrical characteristics of these diodes were investigated using experimental current–voltage measurements in the dark and at room temperature.  相似文献   

14.
A new graft copolymers poly(aryl ether sulfone)‐graft‐polystyrene (PSF‐g‐PS) and poly(aryl ether sulfone)‐graft‐[polystyrene‐block‐poly(methyl methacrylate)] (PSF‐g‐(PS‐b‐PMMA)) were successfully prepared via atom transfer radical polymerisation (ATRP) catalyzed by FeCl2/isophthalic acid in N,N‐dimethyl formamide. The products were characterized by GPC, DSC, IR, TGA and NMR. The characterization data indicated that the graft copolymerization was accomplished via conventional ATRP mechanism. The effect of chloride content of the macroinitiator on the graft copolymerization was investigated. Only one glass transition temperature (Tg) was detected by DSC for the graft copolymer PSF‐g‐PS and two glass transition temperatures were observed in the DSC curve of PSF‐g‐(PS‐b‐PMMA). The presence of PSF in PSF‐b‐PS or PSF‐g‐(PS‐b‐PMMA) was found to improve thermal stabilities. © 2002 Society of Chemical Industry  相似文献   

15.
Amphiphilic copolymers of butyl acrylate (BA) and methyl methacrylate (MMA) with uniform polyoxyethylene (PEO) grafts were synthesized by the copolymerization of BA and MMA with a methacrylate‐terminated PEO macromer in benzene with azobisisobutyronitrile as an initiator. The effects of various copolymerization conditions on the grafting efficiency and molecular weight of the copolymers, as well as the effect of the copolymerization time on the conversions of the macromer and the monomers, were reported. The copolymers, with uniform PEO grafts, were purified by successive extractions with water and ether/acetone (3/7) to remove unreacted macromer and ungrafted copolymers of MMA and BA, respectively. The purified graft copolymers were characterized with IR, 1H‐NMR, membrane osmometry, gel permeation chromatography, and differential scanning calorimetry. The highest grafting efficiency was about 90%, and molecular weight of the copolymers varied around 105. The average grafting number of the copolymer was about 10. A study of the crystalline properties, emulsifying properties, phase‐transfer catalytic ability, and mechanical properties of the graft copolymers showed that the emulsifying volume decreased with the increasing molecular weight of the PEO grafts but increased with the PEO content. The conversion of potassium phenolate in the Williamson solid–liquid reaction obviously increased with an increasing PEO content of the graft copolymers. The crystallinity of the graft copolymers increased with the PEO content of the graft copolymers or the molecular weight of the macromer used. The copolymers, prepared under certain conditions, behaved as thermoplastic elastomers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2982–2988, 2003  相似文献   

16.
Graft copolymers of poly(vinyl alcohol) and polyacrylamide (PVA‐g‐PAM) were synthesized using a ceric ion–induced solution polymerization technique at 28°C. Three grades of graft copolymers were synthesized with varying acrylamide concentrations. Three grades of hydrolyzed products of PVA‐g‐PAM were synthesized with varying concentrations of sodium hydroxide solution. Hydrolyzed and unhydrolyzed PVA‐g‐PAM were characterized by viscometry, X‐ray diffractometry, infrared spectroscopy, and thermal analysis. Rheological investigation was also carried out on the aqueous solutions of various samples. The flocculation characteristics of various materials were investigated by the use of jar and settling tests in 0.25 and 5 wt %, respectively, using kaolin and iron ore suspensions. Among the series of graft copolymers, the one with fewest but longest PAM chains showed superior performance. The flocculation characteristics of the best‐performing graft copolymer were compared with those of various commercially available flocculants in the two suspensions under investigation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2109–2122, 2006  相似文献   

17.
The synthesis of glycogen‐g‐polyacrylamide (Gly‐g‐PAM) was carried out by a ceric ion‐induced solution polymerization technique. Six grades of graft copolymers were synthesized by the variation of catalyst and monomer concentrations. These graft copolymers were characterized by intrinsic viscosity measurements, FTIR spectroscopy, and X‐ray diffraction techniques. Flocculation performance of these graft copolymers were done in kaolin suspension. Of the above grades, the graft copolymer Gly‐g‐PAM 5, which has longer PAM chains, showed best flocculation performance. The flocculation performance of the graft copolymer was compared with commercial flocculants and other PAM‐grafted flocculants developed so far in the authors' laboratory. In all the cases, it was found that the graft copolymer performed the best. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 773–778, 2007  相似文献   

18.
The compatibilizing effect of poly(styrene-graft-ethylene oxide) in polystyrene (PS) blends with poly(n-butyl acrylate) (PBA) and poly(n-butyl acrylate-co-acrylic acid) (PBAAA) was investigated. No significant effects of the graft copolymer on the domain size were found in the PBA blends. By functionalizing PBA with acrylic acid, the average size of the polyacrylate domains was reduced considerably by the graft copolymer. Thermal and dynamic mechanical analysis of the PS/PBAAA blends revealed that the PBAAA glass transition temperature (Tg) decreased with increasing graft copolymer content. The effect of the graft copolymer in the PS/PBAAA blends can be explained by interactions across the interface due to the formation of hydrogen bonds between the poly(ethylene oxide) (PEO) side chains in the graft copolymer and the acrylic acid segments in the PBAAA phase. Hydrogen bonding was confirmed by IR analysis of binary blends of PEO and PBAAA. Partial miscibility in the PEO/PBAAA blends was indicated by a PEO melting point depression and by a Tg reduction of the PBAAA phase. The thermal properties of the PEO/PBA blends indicated only very limited miscibility. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
Isotactic polypropylene graft copolymers, isotactic[polypropylene‐graft‐poly(methyl methacrylate)] (i‐PP‐g‐PMMA) and isotactic[polypropylene‐graft‐polystyrene] (i‐PP‐g‐PS), were prepared by atom‐transfer radical polymerization (ATRP) using a 2‐bromopropionic ester macro‐initiator from functional polypropylene‐containing hydroxyl groups. This kind of functionalized propylene can be obtained by copolymerization of propylene and borane monomer using isospecific MgCl2‐supported TiCl4 as catalyst. Both the graft density and the molecular weights of i‐PP‐based graft copolymers were controlled by changing the hydroxyl group contents of functionalized polypropylene and the amount of monomer used in the grafting reaction. The effect of i‐PP‐g‐PS graft copolymer on PP‐PS blends and that of i‐PP‐g‐PMMA graft copolymer on PP‐PMMA blends were studied by scanning electron microscopy. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
The synthesis of two polysaccharide‐based graft copolymers with acrylamide, guar gum grafted polyacrylamide (GG‐g‐PAM) and hydroxypropyl guar gum grafted polyacrylamide (HPG‐g‐PAM) is described. The graft copolymers have been characterized by viscometry, infrared spectroscopy and thermal analysis. The flocculation characteristics of the graft copolymers have been studied in kaolin, iron ore, and silica suspensions. For the base polysaccharides guar gum (GG) and hydroxypropyl guar gum (HPG), it is observed that GG exhibits better performance than HPG in all three suspensions. For the graft copolymers, HPG‐g‐PAM shows better performance than GG‐g‐PAM. The flocculation characteristics of the best performing graft copolymer (HPG‐g‐PAM) are compared with various commercially available flocculants in the three suspensions mentioned above. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号