首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 540 毫秒
1.

The 3D metal–organic framework (MOF), MIL-88B, built from the trivalent metal ions and the ditopic 1,4-Benzene dicarboxylic acid linker (H2BDC), distinguishes itself from the other MOFs for its flexibility and high thermal stability. MIL-88B was synthesized by a rapid microwave-assisted solvothermal method at high power (850 W). The iron-based MIL-88B [Fe3.O.Cl.(O2C–C6H4–CO2)3] exposed oxygen and iron content of 29% and 24%, respectively, which offers unique properties as an oxygen-rich catalyst for energetic systems. Upon dispersion in an organic solvent and integration into ammonium perchlorate (AP) (the universal oxidizer for energetic systems), the dispersion of the MOF particles into the AP energetic matrix was uniform (investigated via elemental mapping using an EDX detector). Therefore, MIL-88B(Fe) could probe AP decomposition with the exclusive formation of mono-dispersed Fe2O3 nanocatalyst during the AP decomposition. The evolved nanocatalyst can offer superior combustion characteristics. XRD pattern for the MIL-88B(Fe) framework TGA residuals confirmed the formation of α-Fe2O3 nanocatalyst as a final product. The catalytic efficiency of MIL-88B(Fe) on AP thermal behavior was assessed via DSC and TGA. AP solely demonstrated a decomposition enthalpy of 733 J g?1, while AP/MIL-88B(Fe) showed a 66% higher decomposition enthalpy of 1218 J g?1; the main exothermic decomposition temperature was decreased by 71 °C. Besides, MIL-88B(Fe) resulted in a decrease in AP decomposition activation energy by 23% and 25% using Kissinger and Kissinger–Akahira–Sunose (KAS) models, respectively.

  相似文献   

2.
The catalytic effect on the thermal decomposition behavior of ammonium perchlorate (AP) of p‐type nano‐CuO and CuCr2O4 synthesized by an electrochemical method has been investigated using differential scanning calorimetry as a function of catalyst concentration. The nano‐copper chromite (CuCr2O4) showed best catalytic effects as compared to nano‐cupric oxide (CuO) in lowering the high temperature decomposition by 118 °C at 2 wt.‐%. High heat releases of 5.430 and 3.921 kJ g−1 were observed in the presence of nano‐CuO and CuCr2O4, respectively. The kinetic parameters were evaluated using the Kissinger method. The decrease in the activation energy and the increase in the rate constant for both the oxides confirmed the enhancement in catalytic activity of AP. A mechanism based on an electron transfer process has also been proposed for AP in the presence of nano‐metal oxides.  相似文献   

3.
Thermal decomposition of powdered ammonium perchlorate (AP), polystyrene (PS) and APPS propellant, catalysed by freshly-prepared CuCr2O4 and mixtures of CuCr2O4 and CuO, has been studied with a low concentration (1% by mass) of the catalysts. It appears that decomposition is increased due to heterogeneous catalysis. The kinetics of thermal decomposition of AP in the presence of CuCr2O4 in the orthorhombic region of AP have also been studied.  相似文献   

4.
A novel ceramic membrane anti‐solvent crystallization (CMASC) method was proposed to prepare Fe2O3/AP nanocomposites with core‐shell structure. For the preparation of Fe2O3/AP nanocomposites, several key advantages of the CMASC method are as follows. Firstly, both well‐dispersed Fe2O3 nanoparticles and the superfine AP preparation can be achieved at one step. Secondly, no non‐component of solid propellant was involved in this composite process. Thirdly, the size and morphology of Fe2O3/AP nanocomposites can be effectively controlled by using the ceramic membrane with regular pore structure as feeding template. The morphology and structure of Fe2O3/AP nanocomposites were characterized by inductively coupled plasma spectrophotometry (ICP), IR spectroscopy, SEM, and HRTEM. The results verified that the size and morphology of Fe2O3/AP nanocomposites are controllable, and the dispersion of Fe2O3 nanoparticles is greatly improved in Fe2O3/AP nanocomposites. Moreover, the thermal decomposition of the as‐prepared Fe2O3/AP nanocomposites was measured with TG‐DSC. The results showed that the Fe2O3 nanoparticles in Fe2O3/AP nanocomposites exhibit better catalytic activity on the thermal decomposition of AP. In addition, the mechanism was also discussed.  相似文献   

5.
A comparative study of the thermal decomposition of ammonium perchlorate (AP)/hydroxy terminated polybutadiene (HTPB) based composite propellants has been carried out in presence and absence of nano iron oxide at different heating rates in a dynamic nitrogen atmosphere using differential scanning calorimetry. The pronounced effect was a lowering of the high temperature decomposition by 49 °C. A higher heat release up to 40% was observed in presence of nano ferric oxide (3.5 nm). The kinetic parameters were evaluated using the Kissinger method. The increase of the rate constant in the catalyzed propellant confirmed the enhancement of the catalytic activity of ammonium perchlorate. The scanning electron micrographs of nano Fe2O3 incorporated in HTPB revealed a well‐separated characteristic necklace‐like structure of α‐Fe2O3 particles at high magnification.  相似文献   

6.
The burning rate of AP/HTPB composite propellant increases with increasing AP content and with decreasing AP size. In addition, the burning rate can be enhanced with the addition of Fe2O3. The burning characteristics and thermal decomposition behavior of AP/HTPB composite propellant using coarse and fine AP particles with and without Fe2O3 at various AP contents were investigated to obtain an exhaustive set of data. As the AP content decreased, the burning rate decreased and the propellants containing less than a certain AP content self‐quenched or did not ignite. The self‐quenched combustion began at both lower and higher pressures. The lower limit of AP content to burn the propellant with coarse AP was lower than that with fine AP. The lower limit of AP content to burn was decreased by the addition of Fe2O3. The thermal decomposition behavior of propellants prepared with 20–80 % AP was investigated. The decrease in the peak temperature of the exothermic decomposition suggested an increased burning rate. However, a quantitative relationship between the thermochemical behavior and the burning characteristics, such as the burning rate and the lower limit of AP content to burn, could not be determined.  相似文献   

7.
Mixed transition metal oxides (MTMO) nanoparticles of 3rd‐series (NiCo2O4, CuCo2O4, and ZnCo2O4) were prepared by a co‐precipitation method. These were characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The particle size was found to be in the order of 53.0, 43.4, and 21.2 nm, respectively. The thermolysis of ammonium perchlorate (AP), AP‐HTPB (hydroxyterminated polybutadiene) composite solid propellants (CSPs), and HTPB was found to be catalyzed with MTMOs and the burning rate of CSPs was also enhanced. TG and ignition delay study demonstrated that the higher temperature decomposition (HTD) of AP is catalyzed enormously by these catalysts and CuCo2O4 is the best candidate.  相似文献   

8.
Thermal decomposition of AMMO/AP composite propellants was studied by DTA, TGA and DSC in helium atmosphere. The effects of accelerated aging at 347 K for 370 days on decomposition kinetics were also measured. AMMO/AP propellant showed two different decomposition steps, which were mainly the AMMO binder decomposed region and the reaction of AP dominated region. These regions were separated at around 20 % weight loss point at the condition used in this study. AMMO binder decomposition and AP decomposition were strongly related each other. The heat generated by the AMMO binder decomposition initiated and accelerated the thermal decomposition of AP. Although both Fe2O3 and CFe activated the thermal decomposition of AMMO/AP propellants, CFe mainly accelerated the decomposition of AMMO binder and Fe2O3 catalyzed the AP reactions which consisted of the AP decomposition and the reaction between decomposed AP and decomposed AMMO binder. AMMO/AP composite propellants were thermally stable even after aging at 347 K for 370 days.  相似文献   

9.
A technique of composite processing of Fe2O3 and ammonium perchlorate (AP) was employed in making the propellant. The effects of composite processing of Fe2O3 on catalytic activity, on the thermal decomposition of AP, and on the burning rate of the composite propellant were investigated in this paper. Fe2O3/AP composite particles were prepared by a novel solvent‐nonsolvent method. The results show that AP is successfully coated on the surface of Fe2O3. Composite processing of Fe2O3 and AP can improve the catalytic activity of Fe2O3. Fe2O3 exhibits better catalytic effect with increasing Fe2O3 content. The larger interface between Fe2O3 and AP and lower density of composite propellant (with the added Fe2O3/AP composite particles) are responsible for the enhancement of the catalytic activity of Fe2O3.  相似文献   

10.
《Ceramics International》2021,47(23):33269-33279
A series of MXene/MnCo2O4.5 nanocomposites was successfully prepared by hydrothermal, ice crystal template and physical blend methods, respectively. Various characterizations indicated that hydrothermal method could successfully loaded MnCo2O4.5 nanoparticles on the surface of MXene nanosheets to obtain MMC-W nanocomposites with 3D flower-like structure, which could give MMC-W large specific surface area. The HTD temperature and decomposition heat of AP with adding 2.0 wt% MMC-W could significantly decrease to 304.7 °C and increase to 1310.9 J g-1, respectively. The lowest decomposition temperature (286.1 °C) and the highest heat release (1427.6 J g-1) of AP could be obtained by adding 8.0 wt% and 4.0 wt% of MMC-W, respectively. Moreover, MMC-W (2.0 wt%) could also significantly reduce the Ea of pure AP by 118.3 kJ mol-1 and increase the k value for AP by 11.2 times. The excellent catalytic performance of MMC-W was owing to the synergistic effect of nano-sized MnCo2O4.5 and MXene nanosheets. Owing to its high catalytic activity, MMC-W would be used as an excellent catalyst for ameliorating AP decomposition and supply an idea for the preparation of novel metal oxide nanoparticles.  相似文献   

11.
Magnesium‐based hydrogen storage materials (MgH2, Mg2NiH4, and Mg2Cu‐H) were prepared and their structures were determined by XRD and ICP investigations. Mg2NiH4 has a monoclinic crystal structure and Mg2Cu‐H is a mixture of MgCu2 and MgH2. The effects of magnesium‐based hydrogen storage materials on the thermal decomposition of ammonium perchlorate (AP) were studied by thermal analysis (DSC). It was found that magnesium‐based hydrogen storage materials show obvious boosting effects on the thermal decomposition of AP. The thermal decomposition peak temperature of AP was decreased, while the heat release of the decomposition of AP was increased. It was revealed that the effects of magnesium‐based hydrogen storage materials on the decomposition of AP become stronger with increasing content. The influence mechanism on the thermal decomposition of AP is suggested as follows: hydrogen released from magnesium‐based hydrogen storage materials and Mg, Ni, or Cu react with the decomposed products of AP.  相似文献   

12.
Mn3O4–graphene (Mn3O4–GR) hybrids were synthesized using a one-step strategy under solvothermal conditions. During this process graphene oxide (GO) was reduced to GR and at the same time ultrafine Mn3O4 nanoparticles (NPs) with a size of ∼10 nm were uniformly anchored on the GR sheets. The Mn3O4–GR hybrids showed promising catalytic effects for the thermal decomposition of ammonium perchlorate (AP). The decomposition temperature was decreased by 141.9 °C and only one decomposing step was observed instead of common two in reported literature. This improved performance in the catalytic reaction is closely related to the synergistic effect of Mn3O4 and GR.  相似文献   

13.
Metal oxide nanoparticles have been used as burning rate catalysts for ammonium perchlorate (AP) decomposition in composite solid propellants. Though most papers point to the efficiency of different sizes, shapes and compositions, the texture of the agglomerated particles plays an important role in the catalytic efficiency, but this aspect is not always discussed. In this paper, iron oxide and composite iron oxide/silica powders were synthesized in microemulsion systems and their effect on the decomposition of AP was investigated. X‐ray diffraction (XRD) analysis and Fourier transformed infrared spectroscopy (FT‐IR) showed that the synthesized powders have an amorphous to nanocrystalline pattern, with Fe2O3 composition. The use of different FT‐IR spectroscopic techniques – transmission, diffuse reflectance (DRIFT) and universal attenuated total reflectance (UATR) – allied to electron microscopy analysis allowed the characterization of the samples’ surface, indicating that silicon oxide forms a thick matrix that covers the iron oxide nanoparticles. Adsorption of N2, light scattering and electron microscopy pointed that all samples are formed by mesoporous agglomerated nanoparticles containing micropores indicating that silicon oxide forms a thick matrix that covers the iron oxide nanoparticles. Adsorption of N2, pointed that all samples show different microstructures and light scattering indicated results refer to agglomerated particles. Finally, the catalytic effect of the samples on the decomposition of AP was evaluated by thermogravimetric analysis coupled to differential thermal analysis (TG/DTA), showing that only the high temperature decomposition step of AP was affected by the catalyst, shifting to lower temperatures the higher the surface area of the synthesized iron oxide sample, regardless of the presence of the silica matrix.  相似文献   

14.
Zhao-Tie Liu  Xin Li  Jian Lu 《Powder Technology》2009,189(3):514-10752
Cobalt nanocrystals with highly ordered snowflake-like, cauliflower-like, ball-like morphologies, and some less ordered shapes were prepared through the reduction of Co(NO3)2 by hydrazine hydrate in the solution of methanol, ethanol, ethylene glycol, and 1,2-propanediol. Based on the characterization results of X-ray powder diffraction and scanning electron microscope, crystal and morphologic structures of cobalt particles were correlated with the reaction conditions of temperature, Co(NO3)2 concentration, and the alcohols used. By changing temperature and/or Co(NO3)2 concentration, pure hexagonal close-packed (hcp) cobalt or a mixture of hcp and face-centered cubic (fcc) cobalt was obtained. The catalytic performance of as-prepared cobalt nanocrystals for the thermal decomposition of ammonium perchlorate (AP) was evaluated by differential scanning calorimetry. The decomposition temperature of AP was significantly decreased, and the apparent decomposition heat was over doubled when 2 wt.% cobalt was added into AP. Among the samples tested, snowflake-like cobalt showed the best performance in the aspect of decreasing the decomposition temperature of AP while the ball-like cobalt exhibited the highest apparent decomposition heat.  相似文献   

15.
An efficient and scalable one-pot synthetic method to prepare nanostructure composite of ZnFe2O4–FeFe2O4–ZnO (ZFZ) has been investigated. This method is based on thermal decomposition of iron(III) acetate and zinc acetate in monoethanolamine (MEA) as a capping agent. Moreover, thermogravimetric analysis (TG-DTG) was performed to determine the temperature at which the decomposition and oxidation of the chelating agents took place. ZFZ was immobilized on glass using doctor blade method and calcinated at different temperatures. The properties of the ZFZ nanocomposite have been examined by different techniques, such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectance (DRS). FESEM shows that nanocomposite is monocrystallines and a narrow dispersion in size of 48 nm. XRD confirms that the prepared nanocomposite is composed of franklinite, ZnFe2O4 (54%), magnetite, FeFe2O4 (8%) and wurtzite, ZnO (48%). Photocatalytic activity of ZFZ immobilized on glass was carried out by choosing an azo textile dye, Reactive Red 195 (F3B) as a model pollutant under UV irradiation with homemade photocatalytic apparatus and the results indicated that ZFZ exhibited good photocatalytic activity.  相似文献   

16.
《Ceramics International》2016,42(3):3876-3881
Various CuO nanostructures, including spherical, flower-like, cross-like, leaf-like, and elliptical structures, were obtained via a sodium phosphate (Na3PO4)–assisted hydrothermal route with CuSO4 and NaOH as the copper and alkali sources, respectively. The presence of Na3PO4 is vital for the formation of various CuO nanostructures. The morphology of the CuO nanostructures is significantly influenced by the feeding concentration of the NaOH solution. The catalytic activity of the CuO products on the thermal decomposition of ammonium perchlorate (AP) was characterized by differential scanning calorimetry (DSC). Results showed that the addition of CuO nanostructures could dramatically decrease the high decomposition temperature of AP, thereby demonstrating their excellent catalytic activity for the thermal decomposition of AP.  相似文献   

17.
Ammonium perchlorate (AP)/Cu(OH)2 core‐shell nanocomposites were successfully synthesized using a facile ultrasonic assisted‐coprecipitation synthesis route. The obtained AP/Cu(OH)2 nanocomposites were characterized by means of powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Its thermal decomposition was studied under the non‐isothermal conditions with thermogravimetric analysis and differential scanning calorimeter (TG‐DSC) techniques. In this procedure, SEM and TEM observations revealed that Cu(OH)2 nanoparticles with an average size of 10–15 nm were uniformly deposited on the surface of AP particles. Detailed characterization results indicated that the existence of evidence of Cu(OH)2. As expected, it was found that the AP/Cu(OH)2 nanocomposites with mass fraction of 2 wt % Cu(OH)2 remarkably decreased the peak temperature of high temperature decomposition of AP by 80.2 °C from approximately 441.3 °C to 361.1 °C. As compared with pure AP, the AP/Cu(OH)2 nanocomposites show lower impact and friction sensitivity. These results may lead to potential applications of the AP/Cu(OH)2 nanocomposites in the composite solid propellants for accelerating the thermal decomposition of AP.  相似文献   

18.
(BiPb)2Sr2Ca2Cu3Ox superconductor powders were synthesized by the sol-gel method using an aqueous solution of metal nitrates containing polyacrylic acid and tartaric acid as chelating agents. The conditions of the sol formation were determined and the thermal decomposition process of the gel precursor was examined. The effect of sintering temperature on the particle morphology was also investigated. High purity Bi(Pb)-Sr-Ca-Cu-O superconducting oxide powders with high-Tc phase could be obtained and they exhibited sharp superconducting transition with zero temperature of 105 K.  相似文献   

19.
Burning rate measurements were carried out for ammonium perchlorate/hydroxyl‐terminated polybutadiene (AP/HTPB) composite propellants with iron (Fe) nanoparticles as additives. Experiments were performed in a strand burner at pressures from 0.2 to 10 MPa for propellants containing approximately 80 % AP and Fe nanoparticles (60–80 nm) at concentration from 0 to 3 % by weight. It was found that the addition of 1 % Fe nanoparticles increased burning rate by factors of 1.2–1.6. Because Fe nanoparticles are oxidized on the surface and have high surface‐to‐volume ratio, they provide a large surface area of Fe2O3 for AP thermal decomposition catalysis at the burning propellant surface, while also providing added energy release due to the oxidation of nanoparticle sub‐shell Fe. The increase in burning rate due to Fe nanoparticle content is similar to the increase in burning rate caused by the addition of iron oxide (Fe2O3) particles observed in prior literature.  相似文献   

20.
Spinel ferrites MFe2O4 (M = Mn, Co, Ni, Cu) have been prepared from the thermolysis of transition metal bis(citrato)ferrates(III), M3[Fe(C6H5O7)2]2·xH2O. Various physico-chemical studies, i.e. TG–DTG–DSC, XRD and Mössbauer spectroscopy have been employed for the investigation of the mode of decomposition and characterization of intermediates/products formed. After dehydration the anhydrous precursor undergoes an oxidative decomposition to yield α-Fe2O3 and respective metal oxide. Finally spinel ferrites, MFe2O4, are formed as a result of a solid-state reaction between the oxides at a much lower temperature (310–440 °C) and in less time as compared to that of the conventional ceramic method. SEM studies show these ferrites to be of nanosized. Ferrites obtained from the thermolysis of transition metal ferricitrate precursors show higher values of saturation magnetization than those got from respective ferrimalonate precursors, thus designating the former as novel materials to operate at high frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号