首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abiotic stressors, such as drought, heavy metals, and high salinity, are causing huge crop losses worldwide. These abiotic stressors are expected to become more extreme, less predictable, and more widespread in the near future. With the rapidly growing human population and changing global climate conditions, it is critical to prevent global crop losses to meet the increasing demand for food and other crop products. The reactive gaseous signaling molecule nitric oxide (NO) is involved in numerous plant developmental processes as well as plant responses to various abiotic stresses through its interactions with various molecules. Together, these interactions lead to the homeostasis of reactive oxygen species (ROS), proline and glutathione biosynthesis, post-translational modifications such as S-nitrosylation, and modulation of gene and protein expression. Exogenous application of various NO donors positively mitigates the negative effects of various abiotic stressors. In view of the multidimensional role of this signaling molecule, research over the past decade has investigated its potential in alleviating the deleterious effects of various abiotic stressors, particularly in ROS homeostasis. In this review, we highlight the recent molecular and physiological advances that provide insights into the functional role of NO in mediating various abiotic stress responses in plants.  相似文献   

2.
Controlled atmosphere (CA) has been used to alleviate chilling injury (CI) of horticultural crops caused by cold storage. However, the effects of CA treatment on peach fruit sensory quality and flavor-related chemicals suffering from CI remain largely unknown. Here, we stored peach fruit under CA with 5% O2 and 10% CO2 at 0 °C up to 28 d followed by a subsequent 3 d shelf-life at 20 °C (28S3). CA significantly reduced flesh browning and improved sensory quality at 28S3. Though total volatiles declined during extended cold storage, CA accumulated higher content of volatile esters and lactones than control at 28S3. A total of 14 volatiles were positively correlated with consumer acceptability, mainly including three C6 compounds, three esters and four lactones derived from the fatty acid lipoxygenase (LOX) pathway. Correspondingly, the expression levels of genes including PpLOX1, hyperoxide lyase PpHPL1 and alcohol acyltransferase PpAAT1 were positively correlated with the change of esters and lactones. CA elevated the sucrose content and the degree of fatty acids unsaturation under cold storage, which gave us clues to clarify the mechanism of resistance to cold stress. The results suggested that CA treatment improved sensory quality by alleviating CI of peach fruits under cold storage.  相似文献   

3.
Organ shortage has led to the increasing utilization of livers retrieved from donors after circulatory death (DCD). These pre-damaged organs are susceptible to further warm ischemia and exhibit minimal tolerance for cold storage. The aim was thus to examine the effects of fibrinolysis combined with Venous Systemic Oxygen Persufflation (VSOP) on the preservation of DCD livers in vivo. Livers of male Lewis rats were explanted after 45 min of warm ischemia, cold-stored for 18 h, and transplanted into a recipient animal. Livers were left untreated or underwent either VSOP or fibrinolysis via Streptokinase (SK) or received combined SK and VSOP. Combined treatment exhibited improved microvascular flow at 168 h (p = 0.0009) and elevated microperfusion velocity at 24 h post-transplantation (p = 0.0007). Combination treatment demonstrated increased portal venous flow (PVF) at 3 and 24 h post-transplantation (p = 0.0004, p < 0.0001), although SK and VSOP analogously achieved increases at 24 h (p = 0.0036, p = 0.0051). Enzyme release was decreased for combination treatment (p = 0.0002, p = 0.0223) and lactate dehydrogenase (LDH) measurements were lower at 24 h post-transplantation (p = 0.0287). Further supporting findings have been obtained in terms of serum cytokine levels and in the alterations of endothelial injury markers. The combination treatment of SK + VSOP might provide improved organ integrity and viability and may therefore warrant further investigation as a potential therapeutic approach in the clinical setting of DCD.  相似文献   

4.
This paper provides quantitative information on oxygen transfer as well as the kinetic and metabolic parameters related to oxygen uptake in Streptomyces coelicolor A3(2) cultured in a 20 dm3 computer controlled bioreactor using both defined and complex media. It is evident from the literature that production of antibiotics is strongly affected by the dissolved oxygen concentration. Many processes of antibiotic fermentations have been developed to the point at which the microbial oxygen demand exceeds the oxygen transfer capability of the existing fermentation facilities. As a consequence, the oxygen transfer rate has become the rate limiting factor in such processes. It is necessary to know the oxygen kinetic and metabolic parameters of an aerobic fermentation for a successful scale-up and operational control of the process. In the literature, information concerning the oxygen uptake kinetics of the Streptomyces cultures is scarce despite their industrial importance. This paper, therefore, provides useful quantitative information on oxygen transfer and uptake rates in S. coelicolor cultures. In the defined medium, the total oxygen uptake rates were in the range of 5–6 mmol O2 dm−3 h−1 throughout the active growth phase, the maximum specific oxygen uptake rate was 7·44 mmol O2 g cell−1 h−1, the specific oxygen maintenance demand was 1·88 mmol O2 g cell−1 h−1, and the kLa values were in the range of 40–100 h−1. In the complex medium, however, the kLa values varied in the range of 18–70 h−1. © 1998 Society of Chemical Industry  相似文献   

5.
Poly(dimethylsiloxane) (PDMS) and aromatic polyamide (aramid) multiblock copolymer (PAS) membranes containing ≥55 wt % of PDMS were prepared. Their tensile strength, morphology, and oxygen permeation property were investigated. The observed high tensile strength of PAS with 55 wt % of PDMS indicates the presence of PDMS-aramid co-continuous phases with lamellar structures; furthermore, the microphase-separated structures of PAS membranes were observed by means of transmission electron microscopy. The overall oxygen permeation resistance of a conventional silicone rubber showed typical dependence on stirrer speed, which was derived from the macroscopic relationship between the membrane-liquid interfacial resistance and the stirrer speed. However, the overall oxygen permeation resistances of the PAS membranes were found not to simply depend on stirrer speed. Combining with the oxygen permeability of PAS in the case of a gas-membrane-gas system, the interface resistances of the membranes were evaluated. The interface resistances of the PAS membranes with the two-phase nature were more susceptible to the hydrodynamic parameter than that of the silicone rubber and became lower than that of the silicone rubber at higher stirrer speeds. The low interface resistance together with the high tensile strength of the PAS membranes enables us to provide highly oxygen permeable membranes in practical applications with a membrane-liquid interface. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1153–1159, 1997  相似文献   

6.
7.
The cyclic regeneration of human endometrium is guaranteed by the proliferative capacity of endometrial mesenchymal stromal cells (E-MSCs). Due to this, the autologous infusion of E-MSCs has been proposed to support endometrial growth in a wide range of gynecological diseases. We aimed to compare two different endometrial sampling methods, surgical curettage and vacuum aspiration biopsy random assay (VABRA), and to validate a novel xeno-free method to culture human E-MSCs. Six E-MSCs cell samples were isolated after mechanical tissue homogenization and cultured using human platelet lysate. E-MSCs were characterized for the colony formation capacity, proliferative potential, and multilineage differentiation. The expression of mesenchymal and stemness markers were tested by FACS analysis and real-time PCR, respectively. Chromosomal alterations were evaluated by karyotype analysis, whereas tumorigenic capacity and invasiveness were tested by soft agar assay. Both endometrial sampling techniques allowed efficient isolation and expansion of E-MSCs using a xeno-free method, preserving their mesenchymal and stemness phenotype, proliferative potential, and limited multi-lineage differentiation ability during the culture. No chromosomal alterations and invasive/tumorigenic capacity were observed. Herein, we report the first evidence of efficient E-MSCs isolation and culture in Good Manufacturing Practice compliance conditions, suggesting VABRA endometrial sampling as alternative to surgical curettage.  相似文献   

8.
Hydrogen sulfide (H2S) is an endogenously produced molecule with anti-inflammatory and cytoprotective properties. We aimed to investigate for the first time if a novel, esterase-sensitive H2S-prodrug, BW-HS-101 with the ability to release H2S in a controllable manner, prevents gastric mucosa against acetylsalicylic acid-induced gastropathy on microscopic and molecular levels. Wistar rats were pretreated intragastrically with vehicle, BW-HS-101 (0.5–50 μmol/kg) or its analogue without the ability to release H2S, BW-iHS-101 prior to ASA administration (125 mg/kg, intragastrically). BW-HS-101 was administered alone or in combination with nitroarginine (L-NNA, 20 mg/kg, intraperitoneally) or zinc protoporphyrin IX (10 mg/kg, intraperitoneally). Gastroprotective effects of BW-HS-101 were additionally evaluated against necrotic damage induced by intragastrical administration of 75% ethanol. Gastric mucosal damage was assessed microscopically, and gastric blood flow was determined by laser flowmetry. Gastric mucosal DNA oxidation and PGE2 concentration were assessed by ELISA. Serum and/or gastric protein concentrations of IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-13, VEGF, GM-CSF, IFN-γ, TNF-α, and EGF were determined by a microbeads/fluorescent-based multiplex assay. Changes in gastric mucosal iNOS, HMOX-1, SOCS3, IL1-R1, IL1-R2, TNF-R2, COX-1, and COX-2 mRNA were assessed by real-time PCR. BW-HS-101 or BW-iHS-101 applied at a dose of 50 μmol/kg protected gastric mucosa against ASA-induced gastric damage and prevented a decrease in the gastric blood flow level. H2S prodrug decreased DNA oxidation, systemic and gastric mucosal inflammation with accompanied upregulation of SOCS3, and EGF and HMOX-1 expression. Pharmacological inhibition of nitric oxide (NO) synthase but not carbon monoxide (CO)/heme oxygenase (HMOX) activity by L-NNA or ZnPP, respectively, reversed the gastroprotective effect of BW-HS-101. BW-HS-101 also protected against ethanol-induced gastric injury formation. We conclude that BW-HS-101, due to its ability to release H2S in a controllable manner, prevents gastric mucosa against drugs-induced gastropathy, inflammation and DNA oxidation, and upregulate gastric microcirculation. Gastroprotective effects of this H2S prodrug involves endogenous NO but not CO activity and could be mediated by cytoprotective and anti-inflammatory SOCS3 and EGF pathways.  相似文献   

9.
The papain-like cysteine proteases (PLCPs) is a subfamily of cysteine proteases that plays an important role in leaf senescence, and some of its members are involved in the regulation of plant growth and development under stress. In this study, we cloned a new gene, ZmSAG39, from maize. Expression profile analysis showed that ZmSAG39 was induced by darkness and drought treatments. In addition, the ZmSAG39 overexpression in maize accelerated the senescence of maize leaves under darkness and drought treatments. However, the knockout of ZmSAG39 in maize enhanced the resistance of maize to darkness and drought stresses and reduced the degree of senescence of maize leaves. Under drought stress, compared with WT plants, the knockout lines had a higher seed germination rate, seedling survival rate and chlorophyll content, and lower reactive oxygen species (ROS) level and malondialdehyde (MDA) content. In addition, quantitative real-time PCR (qRT-PCR) analysis showed that ZmSAG39 negatively regulated some stress-related genes but positively regulated senescence-related genes under darkness and drought stress conditions. To summarize, these results indicate that ZmSAG39 is a senescence-related gene and plays a negative role in response to darkness and drought stresses. This study laid a theoretical foundation for the innovation of maize germplasm resources with high quality, high yield and strong stress resistance.  相似文献   

10.
11.
Klebsiella pneumoniae is an important pathogen associated with hospital-acquired pneumonia (HAP). Bacterial pneumonia is characterized by a harmful inflammatory response with a massive influx of neutrophils, production of cytokines and chemokines, and consequent tissue damage and dysfunction. Targeted therapies to block neutrophil migration to avoid tissue damage while keeping the antimicrobial properties of tissue remains a challenge in the field. Here we tested the effect of the anti-inflammatory properties of the chemokine fragment CXCL9(74–103) in pneumonia induced by Klebsiella pneumoniae in mice. Mice were infected by intratracheal injection of Klebsiella pneumoniae and 6 h after infection were treated systemically with CXCL9(74–103). The recruitment of leukocytes, levels of cytokines and chemokines, colony-forming units (CFU), and lung function were evaluated. The treatment with CXCL9(74–103) decreased neutrophil migration to the airways and the production of the cytokine interleukin-1β (IL-1β) without affecting bacterial control. In addition, the therapeutic treatment improved lung function in infected mice. Our results indicated that the treatment with CXCL9(74–103) reduced inflammation and improved lung function in Klebsiella pneumoniae-induced pneumonia.  相似文献   

12.
Sucking lice are obligate ectoparasites of mammalian hosts, causing serious public health problems and economic losses worldwide. It is well known that sucking lice have fragmented mitochondrial (mt) genomes, but many remain undetermined. To better understand patterns of mt genome fragmentation in the sucking lice, we sequenced the mt genome of the buffalo louse Haematopinus tuberculatus using next-generation sequencing (NGS). The mt genome of H. tuberculatus has ten circular minichromosomes containing a total of 37 genes. Each minichromosome is 2.9–5.0 kb long and carries one to eight genes plus one large non-coding region. The number of mt minichromosomes of H. tuberculatus (ten) is different from those of congeneric species (horse louse H. asini, domestic pig louse H. suis and wild pig louse H. apri) and other sucking lice. Two events (gene translocation and merger of mt minichromosome) are observed in Haematopinus. Compared to other studies, our phylogeny generated from mt genome datasets showed a different topology, suggesting that inclusion of data other than mt genomes would be required to resolve phylogeny of sucking lice. To our knowledge, this is the first report of a ten mt minichromosomes genome in sucking lice, which opens a new outlook into unexplored mt genome fragmentation patterns in sucking lice.  相似文献   

13.
Of the five G‐protein‐coupled muscarinic acetylcholine receptors (mAChRs; M1–M5), M5 is the least explored and understood due to a lack of mAChR subtype‐selective ligands. We recently performed a high‐throughput functional screen and identified a number of weak antagonist hits that are selective for the M5 receptor. Here, we report an iterative parallel synthesis and detailed molecular pharmacologic profiling effort that led to the discovery of the first highly selective, central nervous system (CNS)‐penetrant M5‐orthosteric antagonist, with sub‐micromolar potency (hM5 IC50=450 nM , hM5 Ki=340 nM , M1–M4 IC50 >30 μM ), enantiospecific inhibition, and an acceptable drug metabolism and pharmacokinetics (DMPK) profile for in vitro and electrophysiology studies. This compound will be a powerful tool and molecular probe for the further investigation into the role of M5 in addiction and other diseases.  相似文献   

14.
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid, noteworthy for its involvement both in the modulation of various biological processes and in the development of many diseases. S1P signaling can be either pro or anti-inflammatory, and the sphingosine kinase (SphK)–S1P–S1P receptor (S1PR) axis is a factor in accelerating the growth of several cells, including endometriotic cells and fibrosis. Gynecologic disorders, including endometriosis, adenomyosis, and uterine fibroids are characterized by inflammation and fibrosis. S1P signaling and metabolism have been shown to be dysregulated in those disorders and they are likely implicated in their pathogenesis and pathophysiology. Enzymes responsible for inactivating S1P are the most affected by the dysregulation of S1P balanced levels, thus causing accumulation of sphingolipids within these cells and tissues. The present review highlights the past and latest evidence on the role played by the S1P pathways in common gynecologic disorders (GDs). Furthermore, it discusses potential future approaches in the regulation of this signaling pathway that could represent an innovative and promising therapeutical target, also for ovarian cancer treatment.  相似文献   

15.
The transport of La(III) through a dispersion supported liquid membrane with polyvinylidene fluoride membrane as the liquid membrane support and dispersion solution including HCl solution as the stripping solution and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A) in kerosene as the membrane solution, was studied. As a result, the optimum transport conditions of La(III) were obtained as that concentration of HCl solution was 4.0 mol/L, concentration of PC-88A 0.16 mol/L, and volume ratio of membrane to stripping solution 30:30 in the dispersion phase, and pH value 4.0 in the feed phase. Ionic strength had no obvious effect on the transport of La(III). Under the optimum conditions, when initial concentration of La(III) was 0.8′10-4 mol/L, the transport rate was up to 96.3% during the transport time of 125 min. The kinetic equation was developed based on the law of mass diffusion and theory of interface chemistry. The diffusion coefficient of La(III) in the membrane and the thickness of diffusion layer between feed and membrane phases were obtained as 3.20′10-7 m2/s and 3.22′10-5 m, respectively. The calculated results were in good agreement with experimental results.  相似文献   

16.
17.
Manganese (Mn) is now known to have a variety of toxicities, particularly when exposed to it in the workplace. However, there are still ineffective methods for reducing Mn’s hazardous effects. In this study, a new selenium polysaccharide (Se-PCS) was developed from the shell of Camellia oleifera to reduce Mn toxicity in vitro and in vivo. The results revealed that Se-PCS may boost cell survival in Hep G2 cells exposed to Mn and activate antioxidant enzyme activity, lowering ROS and cell apoptosis. Furthermore, after being treated with Se-PCS, Caenorhabditis elegans survived longer under Mn stress. daf-16, a tolerant critical gene, was turned on. Moreover, the antioxidant system was enhanced as the increase in strong antioxidant enzyme activity and high expression of the sod-3, ctl-2, and gst-1 genes. A variety of mutations were also used to confirm that Se-PCS downregulated the insulin signaling pathway. These findings showed that Se-PCS protected Hep G2 cells and C. elegans via the insulin/IGF-1 signaling pathway and that it could be developed into a promising medication to treat Mn toxicity.  相似文献   

18.
Wild‐type Streptomyces coelicolor A3(2) produces aminobacteriohopanetriol as the only elongated C35 hopanoid. The hopanoid phenotype of two mutants bearing a deletion of genes from a previously identified hopanoid biosynthesis gene cluster provides clues to the formation of C35 bacteriohopanepolyols. orf14 encodes a putative nucleosidase; its deletion induces the accumulation of adenosylhopane as it cannot be converted into ribosylhopane. orf18 encodes a putative transaminase; its deletion results in the accumulation of adenosylhopane, ribosylhopane, and bacteriohopanetetrol. Ribosylhopane was postulated twenty years ago as a precursor for bacterial hopanoids but was never identified in a bacterium. Absence of the transaminase encoded by orf18 prevents the reductive amination of ribosylhopane into aminobacteriohopanetriol and induces its accumulation. Its reduction by an aldose‐reductase‐like enzyme produces bacteriohopanetetrol, which is normally not present in S. coelicolor.  相似文献   

19.
20.
Maternal embryonic leucine zipper kinase (MELK) functions as a modulator of intracellular signaling and affects various cellular and biological processes, including cell cycle, cell proliferation, apoptosis, spliceosome assembly, gene expression, embryonic development, hematopoiesis, and oncogenesis. In these cellular processes, MELK functions by binding to numerous proteins. In general, the effects of multiple protein interactions with MELK are oncogenic in nature, and the overexpression of MELK in kinds of cancer provides some evidence that it may be involved in tumorigenic process. In this review, our current knowledge of MELK function and recent discoveries in MELK signaling pathway were discussed. The regulation of MELK in cancers and its potential as a therapeutic target were also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号