首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Considering severe resources constraints and security threat hierarchical routing protocol algorithm. The proposed routing of wireless sensor networks (WSN), the article proposed a novel protocol algorithm can adopt suitable routing technology for the nodes according to the distance of nodes to the base station, density of nodes distribution, and residual energy of nodes. Comparing the proposed routing protocol algorithm with simple direction diffusion routing technology, cluster-based routing mechanisms, and simple hierarchical routing protocol algorithm through comprehensive analysis and simulation in terms of the energy usage, packet latency, and security in the presence of node protocol algorithm is more efficient for wireless sensor networks. compromise attacks, the results show that the proposed routing  相似文献   

2.
对无线传感器网络(WSN)中的最小代价前向协议进行了研究,通过引入随机选择和数据融合功能改进原有协议。用跳数作为代价分析了改进后的协议性能,并进行计算机仿真,结果表明改进后的协议具有更低的网络负荷和更长的生命周期。  相似文献   

3.
为了延长采用电池供电的无线传感器网络的生命周期,提出了一种综合考虑单个节点能耗和节点传输信息至汇集节点所需总能耗的路由算法.该算法首先根据网络中节点到汇集节点从小到大的距离顺序选择待规划节点,然后计算各对应候选节点的评价参数,该参数由单节点能耗和节点传输信息至汇集节点所需总能耗加权得到,最后选择评价参数最小的候选节点作为待规划节点的中继节点.仿真结果表明,该算法的生命周期明显长于LEACH(Low Energy Adaptive Clustering Hier-archy)算法.  相似文献   

4.
Clustering provides an effective way to prolong the lifetime of wireless sensor networks.One of the major issues of a clustering protocol is selecting an optimal group of sensor nodes as the cluster heads to divide the network.Another is the mode of inter-cluster communication.In this paper,an energy-balanced unequal clustering(EBUC)protocol is proposed and evaluated.By using the particle swarm optimization(PSO)algorithm,EBUC partitions all nodes into clusters of unequal size,in which the clusters closer to the base station have smaller size.The cluster heads of these clusters can preserve some more energy for the inter-cluster relay traffic and the 'hot-spots' problem can be avoided.For inter-cluster communication,EBUC adopts an energy-aware multihop routing to reduce the energy consumption of the cluster heads.Simulation results demonstrate that the protocol can efficiently decrease the dead speed of the nodes and prolong the network lifetime.  相似文献   

5.
A trust-aware secure routing protocol (TSRP) for wireless sensor networks is proposed in this paper to defend against varieties of attacks. First, each node calculates the comprehensive trust values of its neighbors based on direct trust value, indirect trust value, volatilization factor, and residual energy to defend against black hole, selective forwarding, wormhole, hello flood, and sinkhole attacks. Second, any source node that needs to send data forwards a routing request packet to its neighbors in multi-path mode, and this continues until the sink at the end is reached. Finally, the sink finds the optimal path based on the path's comprehensive trust values, transmission distance, and hop count by analyzing the received packets. Simulation results show that TSRP has lower network latency, smaller packet loss rate, and lower average network energy consumption than ad hoc on-demand distance vector routing and trust based secure routing protocol.  相似文献   

6.
The features of transmissions in underwater sensor networks (UWSNs) include lower transmission rate, longer delay time, and higher power consumption when compared with terrestrial radio transmissions. The negative effects of transmission collisions deteriorate in such environments. Existing UWSN routing protocols do not consider the transmission collision probability differences resulting from different transmission distances. In this paper, we show that collision probability plays an important role in route selection and propose an energy‐efficient routing protocol (DRP), which considers the distance‐varied collision probability as well as each node's residual energy. Considering these 2 issues, DRP can find a path with high successful transmission rate and high‐residual energy. In fact, DRP can find the path producing the longest network lifetime, which we have confirmed through theoretical analysis. To the best of our knowledge, DRP is the first UWSN routing protocol that uses transmission collision probability as a factor in route selection. Simulation results verify that DRP extends network lifetime, increases network throughput, and reduces end‐to‐end delay when compared with solutions without considering distance‐varied collision probability or residual energy.  相似文献   

7.
Recently, underwater wireless sensor networks (UWSNs) have attracted much research attention to support various applications for pollution monitoring, tsunami warnings, offshore exploration, tactical surveillance, etc. However, because of the peculiar characteristics of UWSNs, designing communication protocols for UWSNs is a challenging task. Particularly, designing a routing protocol is of the most importance for successful data transmissions between sensors and the sink. In this paper, we propose a reliable and energy‐efficient routing protocol, named R‐ERP2R (Reliable Energy‐efficient Routing Protocol based on physical distance and residual energy). The main idea behind R‐ERP2R is to utilize physical distance as a routing metric and to balance energy consumption among sensors. Furthermore, during the selection of forwarding nodes, link quality towards the forwarding nodes is also considered to provide reliability and the residual energy of the forwarding nodes to prolong network lifetime. Using the NS‐2 simulator, R‐ERP2R is compared against a well‐known routing protocol (i.e. depth‐based routing) in terms of network lifetime, energy consumption, end‐to‐end delay and delivery ratio. The simulation results proved that R‐ERP2R performs better in UWSNs.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The application of wireless sensor networks (WSNs) technology in monitoring systems is demanding more efficient services to fulfill the requirements of the monitoring task. For this purpose, the simultaneous presence of features such as different communication mediums (air and water) used by nodes and various sizes of data generated by heterogeneous nodes are the key obstacles to build a communication protocol, which can ensure the reliable data delivery. This work terms such WSNs as mixed wireless sensor networks (MWSNs) which contains the aforementioned features. In this paper, we introduce a new cross‐layer protocol for mixed wireless sensor network (XMSN) which can adapt these features. The proposed cross layer protocol XMSN for such mixed environment is implemented and analyzed extensively in Castalia simulator. The performance of XMSN is compared with composition of well‐known protocols, namely, CTP plus BoX‐MAC‐2. The result shows that XMSN has better efficiency in terms of end‐to‐end delay, energy consumption, and goodput than that of CTP plus BoX‐MAC‐2 protocol.  相似文献   

9.
随着网络负载增加,经典的TPGF( Two-Phase geographic Greedy Forwarding)算法难以找到节点分离路径,会导致网络吞吐量、投递率以及端到端时延性能下降。此外,当网络拓扑变动不大时, TPGF中每条路径所包含节点要消耗比其他节点更多的能量,会导致其过快死亡,从而影响网络性能。为此,将联合网络编码技术引入 TPGF,提出一种编码与能量感知的 TPGF 路由算法( NE-TPGF)。该算法综合考虑节点的地理位置、编码机会、剩余能量等因素,同时利用联合网络编码技术进一步扩展编码结构,充分利用网络编码优势来建立相对最优的传输路径。仿真结果表明, NE-TPGF能够增加编码机会,提高网络吞吐量和投递率,降低端到端时延,并且还有利于减少和平衡节点的能量消耗。  相似文献   

10.
Internet of things (IoT) applications based on wireless sensor networks (WSNs) have recently gained vast momentum. These applications vary from health care, smart cities, and military applications to environmental monitoring and disaster prevention. As a result, energy consumption and network lifetime have become the most critical research area of WSNs. Through energy-efficient routing protocols, it is possible to reduce energy consumption and extend the network lifetime for WSNs. Using hybrid routing protocols that incorporate multiple transmission methods is an effective way to improve network performance. This paper proposes modulated R-SEP (MR-SEP) for large-scale WSN-based IoT applications. MR-SEP is based on the well-known stable election protocol (SEP). MR-SEP defines three initial energy levels for the nodes to improve the network energy distribution and establishes multi-hop communication between the cluster heads (CHs) and the base station (BS) through relay nodes (RNs) to reduce the energy consumption of the nodes to reach the BS. In addition, MR-SEP reduces the replacement frequency of CHs, which helps increase network lifetime and decrease power consumption. Simulation results show that MR-SEP outperforms SEP, LEACH, and DEEC protocols by 70.2%, 71.58%, and 74.3%, respectively, in terms of lifetime and by 86.53%, 86.68%, and 86.93% in terms of throughput.  相似文献   

11.
Underwater wireless sensor network (UWSN) is a network made up of underwater sensor nodes, anchor nodes, surface sink nodes or surface stations, and the offshore sink node. Energy consumption, limited bandwidth, propagation delay, high bit error rate, stability, scalability, and network lifetime are the key challenges related to underwater wireless sensor networks. Clustering is used to mitigate these issues. In this work, fuzzy-based unequal clustering protocol (FBUCP) is proposed that does cluster head selection using fuzzy logic as it can deal with the uncertainties of the harsh atmosphere in the water. Cluster heads are selected using linguistic input variables like distance to the surface sink node, residual energy, and node density and linguistic output variables like cluster head advertisement radius and rank of underwater sensor nodes. Unequal clustering is used to have an unequal size of the cluster which deals with the problem of excess energy usage of the underwater sensor nodes near the surface sink node, called the hot spot problem. Data gathered by the cluster heads are transmitted to the surface sink node using neighboring cluster heads in the direction of the surface sink node. Dijkstra's shortest path algorithm is used for multi-hop and inter-cluster routing. The FBUCP is compared with the LEACH-UWSN, CDBR, and FBCA protocols for underwater wireless sensor networks. A comparative analysis shows that in first node dies, the FBUCP is up to 80% better, has 64.86% more network lifetime, has 91% more number of packets transmitted to the surface sink node, and is up to 58.81% more energy efficient than LEACH-UWSN, CDBR, and FBCA.  相似文献   

12.
为满足大规模无线传感器网络局部区域信息收集时的QoS需求,在保证网络连通性的条件下最大限度降低网络能耗与控制开销,本文提出一种基于能耗均衡的按需QoS协议OQBED.该协议采用近似静态分簇和按需信息收集策略减少控制开销,通过有效选择工作节点数目以及执行簇头轮换机制来保障能耗均衡,并在簇头间选取满足QoS条件的最优能源路由来实现数据融合与传送.仿真结果表明,OQBED协议能有效减小控制开销,显著延长网络生命期,大幅度提高信息传输成功率.  相似文献   

13.
卢艳宏  掌明  冯源 《电讯技术》2012,52(8):1349-1353
针对无线传感器网络MAC协议中存在的能耗问题,提出了能量高效的无线传感器网络混合MAC(EEH-MAC)算法,采用基于TDMA机制的时槽系数动态调整簇内节点的时槽大小来降低数据的传输时延;同时,对部分不需要数据传输的节点不分配时槽来减少能耗;按簇内节点剩余能量系数形成时槽分配顺序来减少状态转换的能耗;在簇头之间采用CSMA/CA机制的随机分配策略进行通信.仿真结果表明,EEH-MAC协议能有效减少能耗并延长网络生命周期.  相似文献   

14.
Overlapping is one of the topics in wireless sensor networks that is considered by researchers in the last decades. An appropriate overlapping management system can prolong network lifetime and decrease network recovery time. This paper proposes an intelligent and knowledge‐based overlapping clustering protocol for wireless sensor networks, called IKOCP. This protocol uses some of the intelligent and knowledge‐based systems to construct a robust overlapping strategy for sensor networks. The overall network is partitioned to several regions by a proposed multicriteria decision‐making controller to monitor both small‐scale and large‐scale areas. Each region is managed by a sink, where the whole network is managed by a base station. The sensor nodes are categorized by various clusters using the low‐energy adaptive clustering hierarchy (LEACH)‐improved protocol in a way that the value of p is defined by a proposed support vector machine–based mechanism. A proposed fuzzy system determines that noncluster heads associate with several clusters in order to manage overlapping conditions over the network. Cluster heads are changed into clusters in a period by a suggested utility function. Since network lifetime should be prolonged and network traffic should be alleviated, a data aggregation mechanism is proposed to transmit only crucial data packets from cluster heads to sinks. Cluster heads apply a weighted criteria matrix to perform an inner‐cluster routing for transmitting data packets to sinks. Simulation results demonstrate that the proposed protocol surpasses the existing methods in terms of the number of alive nodes, network lifetime, average time to recover, dead time of first node, and dead time of last node.  相似文献   

15.
Underwater wireless sensor networks (UWSNs) consist of a group of sensors that send the information to the sonobuoys at the surface level. Void area, however, is one of the challenges faced by UWSNs. When a sensor falls in a void area of communication, it causes problems such as high latency, power consumption, or packet loss. In this paper, an energy‐efficient void avoidance geographic routing protocol (EVAGR) has been proposed to handle the void area with low amount of energy consumption. In this protocol, a suitable set of forwarding nodes is selected using a weight function, and the data packets are forwarded to the nodes inside the set. The weight function includes the consumed energy and the depth of the candidate neighboring nodes, and candidate neighboring node selection is based on the packet advancement of the neighboring nodes toward the sonobuoys. Extensive simulation experiments were performed to evaluate the efficiency of the proposed protocol. Simulation results revealed that the proposed protocol can effectively achieve better performance in terms of energy consumption, packet drop, and routing overhead compared with the similar routing protocol.  相似文献   

16.
在无线传感器网络中,分簇型路由在路由协议中占据重要的地位,该协议方便拓扑结构管理,能源利用率高,数据融合简单。文章从簇头生成、簇形成和簇路由3个角度对典型的分簇路由算法LEACH,HEED,EEUC,PEGASIS进行了系统描述,从网络生命周期和节点存活数量等方面,对比了其优缺点,结合该领域的研究现状,指出了未来研究的方向。  相似文献   

17.
~~An energy efficient clustering routing algorithm for wireless sensor networks1. Mainwaring A, Polastre J, Szewczyk R, et al. Wireless sensor networks for habitat monitoring. Proceedings of the ACM International Workshop on Wireless Sensor Networks and A…  相似文献   

18.
为提高无线传感器网络故障容错性和传输稳定性,实现网络负载均衡,提出了一种仿血管路径的无线传感器网络故障容错路由算法.研究了人体血管路径特性及属性关联,对网络节点分区域等级标定并以不同概率值进行静态分簇,运用改进的蚁群算法BWAS(最优最差蚂蚁系统)生成节点路径,以路径信息素值作为传输路径的选择概率建立仿血管拓扑结构路由...  相似文献   

19.
Topology control plays an important role in the design of wireless ad hoc and sensor networks and has demonstrated its high capability in constructing networks with desirable characteristics such as sparser connectivity, lower transmission power, and smaller node degree. However, the enforcement of a topology control algorithm in a network may degrade the energy‐draining balancing capability of the network and thus reduce the network operational lifetime. For this reason, it is important to take into account energy efficiency in the design of a topology control algorithm in order to achieve prolonged network lifetime. In this paper, we propose a localized energy‐efficient topology control algorithm for wireless ad hoc and sensor networks with power control capability in network nodes. To achieve prolonged network lifetime, we introduce a concept called energy criticality avoidance and propose an energy criticality avoidance strategy in topology control and energy‐efficient routing. Through theoretical analysis and simulation results, we prove that the proposed topology control algorithm can maintain the global network connectivity with low complexity and can significantly prolong the lifetime of a multi‐hop wireless network as compared with existing topology control algorithms with little additional protocol overhead. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The problem of distributed estimation in a wireless sensor network with unknown observation noise distribution is investigated, where each sensor only sends quantized data to a fusion center. The sensing field is modeled as a spatially random field. The objective was to accurately estimate a hidden parameter at the location where no sensor exists, while minimizing the total energy consumption. Driven by the lack of a prior knowledge of the sensing field and the existence of some outliers, an indicator kriging estimator is developed for distributed estimation under imperfect communication channels between the sensors and the fusion center. The tradeoff between estimation performance and energy consumption is formulated as an optimization problem, and a global search algorithm is proposed to approximate the solution. The results show that the proposed indicator kriging estimator achieves better performance than the inverse distance estimator and the simple averaging estimator. Moreover, the proposed search algorithm can schedule the sensors to reach the tradeoff. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号