共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive carbonyl species (RCS) such as methylglyoxal (MGO) or glyoxal (GO) are the main precursors of the formation of advanced glycation end products (AGEs). AGEs are a major factor in the development of vascular complications in diabetes. Vasoprotectives (VPs) exhibit a wide range of activities beneficial to cardiovascular health. The present study aimed to investigate selected VPs and their structural analogs for their ability to trap MGO/GO, inhibit AGE formation, and evaluate their antioxidant potential. Ultra-high-performance liquid chromatography coupled with an electrospray ionization mass spectrometer (UHPLC-ESI-MS) and diode-array detector (UHPLC-DAD) was used to investigate direct trapping capacity and kinetics of quenching MGO/GO, respectively. Fluorimetric and colorimetric measurements were used to evaluate antiglycation and antioxidant action. All tested substances showed antiglycative effects, but hesperetin was the most effective in RCS scavenging. We demonstrated that rutin, diosmetin, hesperidin, and hesperetin could trap both MGO and GO by forming adducts, whose structures we proposed. MGO-derived AGE formation was inhibited the most by hesperetin, and GO-derived AGEs by diosmetin. High reducing and antiradical activity was confirmed for quercetin, rutin, hesperetin, and calcium dobesilate. Therefore, in addition to other therapeutic applications, some VPs could be potential candidates as antiglycative agents to prevent AGE-related complications of diabetes. 相似文献
2.
Eva Tvrd Daniel Lovíek Stanislav Kyzek Duan Kov
ik Elika Glov 《International journal of molecular sciences》2021,22(9)
Significant antibacterial properties of non-thermal plasma (NTP) have converted this technology into a promising alternative to the widespread use of antibiotics in assisted reproduction. As substantial data available on the specific in vitro effects of NTP on male reproductive cells are currently missing, this study was designed to investigate selected quality parameters of human spermatozoa (n = 51) exposed to diffuse coplanar surface barrier discharge NTP for 0 s, 15 s, 30 s, 60 s and 90 s. Sperm motility characteristics, membrane integrity, mitochondrial activity, production of reactive oxygen species (ROS), DNA fragmentation and lipid peroxidation (LPO) were investigated immediately following exposure to NTP and 2 h post-NTP treatment. Exposure to NTP with a power input of 40 W for 15 s or 30 s was found to have no negative effects on the sperm structure or function. However, a prolonged NTP treatment impaired all the sperm quality markers in a time- and dose-dependent manner. The most likely mechanism of action of high NTP doses may be connected to ROS overproduction, leading to plasma membrane destabilization, LPO, mitochondrial failure and a subsequent loss of motility as well as DNA integrity. As such, our findings indicate that appropriate plasma exposure conditions need to be carefully selected in order to preserve the sperm vitality, should NTP be used in the practical management of bacteriospermia in the future. 相似文献
3.
Sun-Ja Kim Min-Jeong Seong Jong-Jin Mun Jin-Hee Bae Hea-Min Joh Tae-Hun Chung 《International journal of molecular sciences》2022,23(22)
Despite continuous progress in therapy, melanoma is one of the most aggressive and malignant human tumors, often relapsing and metastasizing to almost all organs. Cold atmospheric plasma (CAP) is a novel anticancer tool that utilizes abundant reactive oxygen and nitrogen species (RONS) being deposited on the target cells and tissues. CAP-induced differential effects between non-cancerous and cancer cells were comparatively examined. Melanoma and non-cancerous skin fibroblast cells (counterparts; both cell types were isolated from the same patient) were used for plasma–cell interactions. The production of intracellular RONS, such as nitric oxide (NO), hydroxyl radical (•OH), and hydrogen peroxide (H2O2), increased remarkably only in melanoma cancer cells. It was observed that cancer cells morphed from spread to round cell shapes after plasma exposure, suggesting that they were more affected than non-cancerous cells in the same plasma condition. Immediately after both cell types were treated with plasma, there were no differences in the amount of extracellular H2O2 production, while Hanks’ balanced salt solution-containing cancer cells had lower concentrations of H2O2 than that of non-cancerous cells at 1 h after treatment. The melanoma cells seemed to respond to CAP treatment with a greater rise in RONS and a higher consumption rate of H2O2 than homologous non-cancerous cells. These results suggest that differential sensitivities of non-cancerous skin and melanoma cells to CAP-induced RONS can enable the applicability of CAP in anticancer therapy. 相似文献
4.
Bin Qiu Susan E. Luczak Tamara L. Wall Aaron M. Kirchhoff Yuxue Xu Mimy Y. Eng Robert B. Stewart Weinian Shou Stephen L. Boehm II Julia A. Chester Weidong Yong Tiebing Liang 《International journal of molecular sciences》2016,17(8)
FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR)-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO) mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1) Fkbp5 KO and wild-type (WT) EtOH consumption was tested using a two-bottle choice paradigm; (2) The EtOH elimination rate was measured after intraperitoneal (IP) injection of 2.0 g/kg EtOH; (3) Blood alcohol concentration (BAC) was measured after 3 h limited access of alcohol; (4) Brain region expression of Fkbp5 was identified using LacZ staining; (5) Baseline corticosterone (CORT) was assessed. Additionally, two SNPs, rs1360780 (C/T) and rs3800373 (T/G), were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162) from 21–26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT). Finally, single nucleotide polymorphisms (SNPs) in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans. 相似文献
5.
Pawel Niemiec Tomasz Nowak Tomasz Iwanicki Sylwia Gorczynska-Kosiorz Anna Balcerzyk Jolanta Krauze Wladyslaw Grzeszczak Maria Wiecha Iwona Zak 《International journal of molecular sciences》2015,16(6):13203-13216
Single nucleotide polymorphisms (SNPs) of the USF1 gene (upstream stimulatory factor 1) influence plasma lipid levels. This study aims to determine whether USF1 SNPs interact with traditional risk factors of atherosclerosis to increase coronary artery disease (CAD) risk. In the present study serum lipid levels and USF1 gene polymorphisms (rs2516839 and rs3737787) were determined in 470 subjects: 235 patients with premature CAD and 235 controls. A trend of increasing triglycerides (TG) levels in relation to the C allele dose of rs2516839 SNP was observed. The synergistic effect of cigarette smoking and C allele carrier state on CAD risk was also found (SIM = 2.69, p = 0.015). TG levels differentiated significantly particular genotypes in smokers (1.53 mmol/L for TT, 1.80 mmol/L for CT and 2.27 mmol/L for CC subjects). In contrast, these differences were not observed in the non-smokers subgroup (1.57 mmol/L for TT, 1.46 mmol/L for CT and 1.49 mmol/L for CC subjects). In conclusion, the rs2516839 polymorphism may modulate serum triglyceride levels in response to cigarette smoking. Carriers of the C allele seem to be particularly at risk of CAD, when exposed to cigarette smoking. 相似文献
6.
Chun-Han Hou Feng-Ling Lin Sheng-Mon Hou Ju-Fang Liu 《International journal of molecular sciences》2014,15(10):17380-17395
Osteosarcoma (OS) is a relatively rare form of cancer, but OS is the most commonly diagnosed bone cancer in children and adolescents. Chemotherapy has side effects and induces drug resistance in OS. Since an effective adjuvant therapy was insufficient for treating OS, researching novel and adequate remedies is critical. Hyperthermia can induce cell death in various cancer cells, and thus, in this study, we investigated the anticancer method of hyperthermia in human OS (U-2 OS) cells. Treatment at 43 °C for 60 min induced apoptosis in human OS cell lines, but not in primary bone cells. Furthermore, hyperthermia was associated with increases of intracellular reactive oxygen species (ROS) and caspase-3 activation in U-2 OS cells. Mitochondrial dysfunction was followed by the release of cytochrome c from the mitochondria, and was accompanied by decreased anti-apoptotic Bcl-2 and Bcl-xL, and increased pro-apoptotic proteins Bak and Bax. Hyperthermia triggered endoplasmic reticulum (ER) stress, which was characterized by changes in cytosolic calcium levels, as well as increased calpain expression and activity. In addition, cells treated with calcium chelator (BAPTA-AM) blocked hyperthermia-induced cell apoptosis in U-2 OS cells. In conclusion, hyperthermia induced cell apoptosis substantially via the ROS, ER stress, mitochondria, and caspase pathways. Thus, hyperthermia may be a novel anticancer method for treating OS. 相似文献
7.
Keiichi Matsubara Takashi Higaki Yuko Matsubara Akihiro Nawa 《International journal of molecular sciences》2015,16(3):4600-4614
Preeclampsia (PE) is characterized by disturbed extravillous trophoblast migration toward uterine spiral arteries leading to increased uteroplacental vascular resistance and by vascular dysfunction resulting in reduced systemic vasodilatory properties. Its pathogenesis is mediated by an altered bioavailability of nitric oxide (NO) and tissue damage caused by increased levels of reactive oxygen species (ROS). Furthermore, superoxide (O2−) rapidly inactivates NO and forms peroxynitrite (ONOO−). It is known that ONOO− accumulates in the placental tissues and injures the placental function in PE. In addition, ROS could stimulate platelet adhesion and aggregation leading to intravascular coagulopathy. ROS-induced coagulopathy causes placental infarction and impairs the uteroplacental blood flow in PE. The disorders could lead to the reduction of oxygen and nutrients required for normal fetal development resulting in fetal growth restriction. On the other hand, several antioxidants scavenge ROS and protect tissues against oxidative damage. Placental antioxidants including catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) protect the vasculature from ROS and maintain the vascular function. However, placental ischemia in PE decreases the antioxidant activity resulting in further elevated oxidative stress, which leads to the appearance of the pathological conditions of PE including hypertension and proteinuria. Oxidative stress is defined as an imbalance between ROS and antioxidant activity. This review provides new insights about roles of oxidative stress in the pathophysiology of PE. 相似文献
8.
Liming Yang Jake C. Fountain Hui Wang Xinzhi Ni Pingsheng Ji Robert D. Lee Robert C. Kemerait Brian T. Scully Baozhu Guo 《International journal of molecular sciences》2015,16(10):24791-24819
Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS) and reactive nitrogen species (RNS) than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding. 相似文献
9.
Marco Antonio Lacerda-Abreu Jos Roberto Meyer-Fernandes 《International journal of molecular sciences》2021,22(15)
Inorganic phosphate (Pi) is an essential nutrient for living organisms and is maintained in equilibrium in the range of 0.8–1.4 mM Pi. Pi is a source of organic constituents for DNA, RNA, and phospholipids and is essential for ATP formation mainly through energy metabolism or cellular signalling modulators. In mitochondria isolated from the brain, liver, and heart, Pi has been shown to induce mitochondrial reactive oxygen species (ROS) release. Therefore, the purpose of this review article was to gather relevant experimental records of the production of Pi-induced reactive species, mainly ROS, to examine their essential roles in physiological processes, such as the development of bone and cartilage and the development of diseases, such as cardiovascular disease, diabetes, muscle atrophy, and male reproductive system impairment. Interestingly, in the presence of different antioxidants or inhibitors of cytoplasmic and mitochondrial Pi transporters, Pi-induced ROS production can be reversed and may be a possible pharmacological target. 相似文献
10.
Azusa Terasaki Hiromi Kurokawa Hiromu Ito Yoshiki Komatsu Daisuke Matano Masahiko Terasaki Hiroko Bando Hisato Hara Hirofumi Matsui 《International journal of molecular sciences》2020,21(24)
Hyperthermia (HT) treatment is a noninvasive cancer therapy, often used with radiation therapy and chemotherapy. Compared with 37 °C, 42 °C is mild heat stress for cells and produces reactive oxygen species (ROS) from mitochondria. To involve subsequent intracellular accumulation of DOX, we have previously reported that the expression of ATP-binding cassette sub-family G member 2 (ABCG2), an exporter of doxorubicin (DOX), was suppressed by a larger amount of intracellular mitochondrial ROS. We then hypothesized that the additive effect of HT and chemotherapy would be induced by the downregulation of ABCG2 expression via intracellular ROS increase. We used human breast cancer cell lines, MCF-7 and MDA-MB-453, incubated at 37 °C or 42 °C for 1 h to clarify this hypothesis. Intracellular ROS production after HT was detected via electron spin resonance (ESR), and DOX cytotoxicity was calculated. Additionally, ABCG2 expression in whole cells was analyzed using Western blotting. We confirmed that the ESR signal peak with HT became higher than that without HT, indicating that the intracellular ROS level was increased by HT. ABCG2 expression was downregulated by HT, and cells were injured after DOX treatment. DOX cytotoxicity enhancement with HT was considered a result of ABCG2 expression downregulation via the increase of ROS production. HT increased intracellular ROS production and downregulated ABCG2 protein expression, leading to cell damage enhancement via DOX. 相似文献
11.
Alena Soboleva Nadezhda Frolova Kseniia Bureiko Julia Shumilina Gerd U. Balcke Vladimir A. Zhukov Igor A. Tikhonovich Andrej Frolov 《International journal of molecular sciences》2022,23(5)
Drought dramatically affects crop productivity worldwide. For legumes this effect is especially pronounced, as their symbiotic association with rhizobia is highly-sensitive to dehydration. This might be attributed to the oxidative stress, which ultimately accompanies plants’ response to water deficit. Indeed, enhanced formation of reactive oxygen species in root nodules might result in up-regulation of lipid peroxidation and overproduction of reactive carbonyl compounds (RCCs), which readily modify biomolecules and disrupt cell functions. Thus, the knowledge of the nodule carbonyl metabolome dynamics is critically important for understanding the drought-related losses of nitrogen fixation efficiency and plant productivity. Therefore, here we provide, to the best of our knowledge, for the first time a comprehensive overview of the pea root nodule carbonyl metabolome and address its alterations in response to polyethylene glycol-induced osmotic stress as the first step to examine the changes of RCC patterns in drought treated plants. RCCs were extracted from the nodules and derivatized with 7-(diethylamino)coumarin-3-carbohydrazide (CHH). The relative quantification of CHH-derivatives by liquid chromatography-high resolution mass spectrometry with a post-run correction for derivative stability revealed in total 194 features with intensities above 1 × 105 counts, 19 of which were down- and three were upregulated. The upregulation of glyceraldehyde could accompany non-enzymatic conversion of glyceraldehyde-3-phosphate to methylglyoxal. The accumulation of 4,5-dioxovaleric acid could be the reason for down-regulation of porphyrin metabolism, suppression of leghemoglobin synthesis, inhibition of nitrogenase and degradation of legume-rhizobial symbiosis in response to polyethylene glycol (PEG)-induced osmotic stress effect. This effect needs to be confirmed with soil-based drought models. 相似文献
12.
Macarena Gonzlez-Portilla Sandra Montagud-Romero Francisco Navarrete Ani Gasparyan Jorge Manzanares Jos Miarro Marta Rodríguez-Arias 《International journal of molecular sciences》2021,22(10)
Alcohol binge drinking (BD) and poor nutritional habits are two frequent behaviors among many adolescents that alter gut microbiota in a pro-inflammatory direction. Dysbiotic changes in the gut microbiome are observed after alcohol and high-fat diet (HFD) consumption, even before obesity onset. In this study, we investigate the neuroinflammatory response of adolescent BD when combined with a continuous or intermittent HFD and its effects on adult ethanol consumption by using a self-administration (SA) paradigm in mice. The inflammatory biomarkers IL-6 and CX3CL1 were measured in the striatum 24 h after BD, 3 weeks later and after the ethanol (EtOH) SA. Adolescent BD increased alcohol consumption in the oral SA and caused a greater motivation to seek the substance. Likewise, mice with intermittent access to HFD exhibited higher EtOH consumption, while the opposite effect was found in mice with continuous HFD access. Biochemical analyses showed that after BD and three weeks later, striatal levels of IL-6 and CX3CL1 were increased. In addition, in saline-treated mice, CX3CL1 was increased after continuous access to HFD. After oral SA procedure, striatal IL-6 was increased only in animals exposed to BD and HFD. In addition, striatal CX3CL1 levels were increased in all BD- and HFD-exposed groups. Overall, our findings show that adolescent BD and intermittent HFD increase adult alcohol intake and point to neuroinflammation as an important mechanism modulating this interaction. 相似文献
13.
Chen-Sheng Chen Bo-Yi Pan Ping-Hsuan Tsai Fang-Yu Chen Wen-Chin Yang Ming-Yi Shen 《International journal of molecular sciences》2021,22(19)
Reactive oxygen species (ROS)-induced vascular endothelial cell apoptosis is strongly associated with atherosclerosis progression. Herein, we aimed to examine whether Kansuinine A (KA), extracted from Euphorbia kansui L., prevents atherosclerosis development in a mouse model and inhibits cell apoptosis through oxidative stress reduction. Atherosclerosis development was analyzed in apolipoprotein E-deficient (ApoE−/−) mice fed a high-fat diet (HFD) using Oil Red O staining and H&E staining. Human aortic endothelial cells (HAECs) were treated with KA, followed by hydrogen peroxide (H2O2), to investigate the KA-mediated inhibition of ROS-induced oxidative stress and cell apoptosis. Oil Red O staining and H&E staining showed that atherosclerotic lesion size was significantly smaller in the aortic arch of ApoE−/− mice in the HFD+KA group than that in the aortic arch of those in the HFD group. Further, KA (0.1–1.0 μM) blocked the H2O2-induced death of HAECs and ROS generation. The H2O2-mediated upregulation of phosphorylated IKKβ, phosphorylated IκBα, and phosphorylated NF-κB was suppressed by KA. KA also reduced the Bax/Bcl-2 ratio and cleaved caspase-3 expression, preventing H2O2-induced vascular endothelial cell apoptosis. Our results indicate that KA may protect against ROS-induced endothelial cell apoptosis and has considerable clinical potential in the prevention of atherosclerosis and cardiovascular diseases. 相似文献
14.
Yutong Jin Brian Dixon Lyndon Jones Maud Gorbet 《International journal of molecular sciences》2021,22(23)
A large number of polymorphonuclear neutrophils (PMNs) invade the ocular surface during prolonged eye closure (sleep); these leukocytes are commonly referred as tear PMNs. PMNs contribute to homeostasis and possess an arsenal of inflammatory mediators to protect against pathogens and foreign materials. This study examined the ability of tear PMNs to generate reactive oxygen species (ROS), an essential killing mechanism for PMNs which can lead to oxidative stress and imbalance. Cells were collected after sleep from healthy participants using a gentle eye wash. ROS production in stimulated (phorbol-12-myristate-13-acetate (PMA), lipopolysaccharides (LPS) or N-Formylmethionyl-leucyl-phenylalanine (fMLP)) and unstimulated tear PMNs was measured using luminol-enhanced chemiluminescence for 60 min. A high level of constitutive/spontaneous ROS production was observed in tear PMNs in the absence of any stimulus. While tear PMNs were able to produce ROS in response to PMA, they failed to appropriately respond to LPS and fMLP, although fMLP-stimulated tear PMNs generated ROS extracellularly in the first three minutes. Higher ROS generation was observed in isolated tear PMNs which may be due to priming from the magnetic bead cell separation system. The differential responses of tear PMNs in ROS generation provide further evidence of their potential inflammatory roles in ocular complications involving oxidative stress. 相似文献
15.
Geng-Ruei Chang Hsien-Yueh Liu Wei-Cheng Yang Chao-Min Wang Ching-Fen Wu Jen-Wei Lin Wei-Li Lin Yu-Chen Wang Tzu-Chun Lin Huei-Jyuan Liao Po-Hsun Hou Chee-Hong Chan Chuen-Fu Lin 《International journal of molecular sciences》2021,22(13)
Clozapine is widely employed in the treatment of schizophrenia. Compared with that of atypical first-generation antipsychotics, atypical second-generation antipsychotics such as clozapine have less severe side effects and may positively affect obesity and blood glucose level. However, no systematic study of clozapine’s adverse metabolic effects—such as changes in kidney and liver function, body weight, glucose and triglyceride levels, and retinopathy—was conducted. This research investigated how clozapine affects weight, the bodily distribution of chromium, liver damage, fatty liver scores, glucose homeostasis, renal impairment, and retinopathy in mice fed a high fat diet (HFD). We discovered that obese mice treated with clozapine gained more weight and had greater kidney, liver, and retroperitoneal and epididymal fat pad masses; higher daily food efficiency; higher serum or hepatic triglyceride, aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen, and creatinine levels; and higher hepatic lipid regulation marker expression than did the HFD-fed control mice. Furthermore, the clozapine group mice exhibited insulin resistance, poorer insulin sensitivity, greater glucose intolerance, and less Akt phosphorylation; their GLUT4 expression was lower, they had renal damage, more reactive oxygen species, and IL-1 expression, and, finally, their levels of antioxidative enzymes (superoxide dismutase, glutathione peroxidase, and catalase) were lower. Moreover, clozapine reduced the thickness of retinal cell layers and increased iNOS and NF-κB expression; a net negative chromium balance occurred because more chromium was excreted through urine, and this influenced chromium mobilization, which did not help overcome the hyperglycemia. Our clozapine group had considerably higher fatty liver scores, which was supported by the findings of lowered adiponectin protein levels and increased FASN protein, PNPLA3 protein, FABP4 mRNA, and SREBP1 mRNA levels. We conclude that clozapine can worsen nonalcoholic fatty liver disease, diabetes, and kidney and retinal injury. Therefore, long-term administration of clozapine warrants higher attention. 相似文献
16.
17.
Lanxiang Tian Yukai Luo Aisheng Zhan Jie Ren Huafeng Qin Yongxin Pan 《International journal of molecular sciences》2022,23(7)
Previous studies have found that hypomagnetic field (HMF) exposure impairs cognition behaviors in animals; however, the underlying neural mechanisms of cognitive dysfunction are unclear. The hippocampus plays important roles in magnetoreception, memory, and spatial navigation in mammals. Therefore, the hippocampus may be the key region in the brain to reveal its neural mechanisms. We recently reported that long-term HMF exposure impairs adult hippocampal neurogenesis and cognition through reducing endogenous reactive oxygen species (ROS) levels in adult neural stem cells that are confined in the subgranular zone (SGZ) of the hippocampus. In addition to adult neural stem cells, the redox state of other cells in the hippocampus is also an important factor affecting the functions of the hippocampus. However, it is unclear whether and how long-term HMF exposure affects ROS levels in the entire hippocampus (i.e., the dentate gyrus (DG) and ammonia horn (CA) regions). Here, we demonstrate that male C57BL/6J mice exposed to 8-week HMF exhibit cognitive impairments. We then found that the ROS levels of the hippocampus were significantly higher in these HMF-exposed mice than in the geomagnetic field (GMF) group. PCR array analysis revealed that the elevated ROS levels were due to HMF-regulating genes that maintain the redox balance in vivo, such as Nox4, Gpx3. Since high levels of ROS may cause hippocampal oxidative stress, we suggest that this is another reason why HMF exposure induces cognitive impairment, besides the hippocampal neurogenesis impairments. Our study further demonstrates that GMF plays an important role in maintaining hippocampal function by regulating the appropriate endogenous ROS levels. 相似文献
18.
In nature, plants develop in complex, adaptive environments. Plants must therefore respond efficiently to environmental stressors to maintain homeostasis and enhance their fitness. Although many coordinated processes remain integral for achieving homeostasis and driving plant development, reactive oxygen species (ROS) function as critical, fast-acting orchestrators that link abiotic and biotic responses to plant homeostasis and development. In addition to the suite of enzymatic and non-enzymatic ROS processing pathways that plants possess, they also rely on their microbiota to buffer and maintain the oxidative window needed to balance anabolic and catabolic processes. Strong evidence has been communicated recently that links ROS regulation to the aggregated function(s) of commensal microbiota and plant-growth-promoting microbes. To date, many reports have put forth insightful syntheses that either detail ROS regulation across plant development (independent of plant microbiota) or examine abiotic–biotic feedbacks in plant microbiomes (independent of clear emphases on ROS regulation). Here we provide a novel synthesis that incorporates recent findings regarding ROS and plant development in the context of both microbiota regulation and plant-associated microbes. Specifically, we discuss various roles of ROS across plant development to strengthen the links between plant microbiome functioning and ROS regulation for both basic and applied research aims. 相似文献
19.
Akihiro Kaidow Noriko Ishii Shingo Suzuki Takashi Shiina Hirokazu Kasahara 《International journal of molecular sciences》2022,23(21)
Chromosome damage combined with defective recombinase activity renders cells inviable, owing to deficient double-strand break repair. Despite this, recA polA cells grow well under either DNA damage response (SOS) conditions or catalase medium supplementation. Catalase treatments reduce intracellular reactive oxygen species (ROS) levels, suggesting that recA polA cells are susceptible to not only chronic chromosome damage but also ROS. In this study, we used a reducing agent, vitamin C, to confirm whether cell growth could be improved. Vitamin C reduced ROS levels and rescued colony formation in recAts polA cells under restrictive temperatures in the presence of hslO, the gene encoding a redox molecular chaperone. Subsequently, we investigated the role of hslO in the cell growth failure of recAts polA cells. The effects of vitamin C were observed in hslO+ cells; simultaneously, cells converged along several ploidies likely through a completion of replication, with the addition of vitamin C at restrictive temperatures. These results suggest that HslO could manage oxidative stress to an acceptable level, allowing for cell division as well as rescuing cell growth. Overall, ROS may regulate several processes, from damage response to cell division. Our results provide a basis for understanding the unsolved regulatory interplay of cellular processes. 相似文献
20.
Sander Bekeschus Dorothee Meyer Kevin Arlt Thomas von Woedtke Lea Miebach Eric Freund Ramona Clemen 《International journal of molecular sciences》2021,22(7)
Cold physical plasma is a partially ionized gas expelling many reactive oxygen and nitrogen species (ROS/RNS). Several plasma devices have been licensed for medical use in dermatology, and recent experimental studies suggest their putative role in cancer treatment. In cancer therapies with an immunological dimension, successful antigen presentation and inflammation modulation is a key hallmark to elicit antitumor immunity. Dendritic cells (DCs) are critical for this task. However, the inflammatory consequences of DCs following plasma exposure are unknown. To this end, human monocyte-derived DCs (moDCs) were expanded from isolated human primary monocytes; exposed to plasma; and their metabolic activity, surface marker expression, and cytokine profiles were analyzed. As controls, hydrogen peroxide, hypochlorous acid, and peroxynitrite were used. Among all types of ROS/RNS-mediated treatments, plasma exposure exerted the most notable increase of activation markers at 24 h such as CD25, CD40, and CD83 known to be crucial for T cell costimulation. Moreover, the treatments increased interleukin (IL)-1α, IL-6, and IL-23. Altogether, this study suggests plasma treatment augmenting costimulatory ligand and cytokine expression in human moDCs, which might exert beneficial effects in the tumor microenvironment. 相似文献