首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Japanese randomized controlled study showed that Interferon â (IFN-â1b) therapy is clinically effective in decreasing the frequency of attacks in multiple sclerosis (MS), even in optico-spinal MS (OSMS). However, recent studies have shown that IFN-â (IFN-â1a/IFN-â1b) treatment was not effective in neuromyelitis optica (NMO) patients and that the diminished benefit of IFN-â treatment in NMO may be due to different immune responses to IFN-â. We determined longitudinally the expression of CCR5, CXCR3 and CCR4 on CD4+ T and CD8+ T cells in the blood from patients with NMO and MS treated with IFN-â1b. During a 12-month period of IFN-â1b therapy, the annualized relapse rate decreased in MS patients but not in NMO patients. There was no significant difference in the expression of the chemokine receptors between NMO and MS at baseline. The percentages of CD4+CCR5+ and CD4+CXCR3+ T cells, representative of the Th1 response, were decreased in both NMO and MS after treatment. The percentage of CD4+CCR4+ T cells, representative of the Th2 response, was decreased in MS, but those for NMO was significantly increased compared with the pretreatment levels. Our results indicate that IFN-â1b-induced up-modulation of the Th2 response in NMO patients may be the source of differences in the therapeutic response to IFN-â1b therapy. In the present study, Th2 predominance is involved in the pathogenesis of NMO.  相似文献   

2.
Neuromyelitis optica (NMO) is a rare autoimmune disorder, distinct from multiple sclerosis, causing inflammatory lesions in the optic nerves and spinal cord. An autoantibody (NMO IgG) against aquaporin-4 (AQP4), a water channel expressed on astrocytes is thought to be causative. Peripheral production of the antibody is triggered by an unknown process in genetically susceptible individuals. Anti-AQP4 antibody enters the central nervous system (CNS) when the blood brain barrier is made permeable and has high affinity for orthogonal array particles of AQP4. Like other autoimmune diseases, Th17 cells and their effector cytokines (such as interleukin 6) have been implicated in pathogenesis. AQP4 expressing peripheral organs are not affected by NMO IgG, but the antibody causes extensive astrocytic loss in specific regions of the CNS through complement mediated cytotoxicity. Demyelination occurs during the inflammatory process and is probably secondary to oligodendrocyte apoptosis subsequent to loss of trophic support from astrocytes. Ultimately, extensive axonal injury leads to severe disability. Despite rapid advances in the understanding of NMO pathogenesis, unanswered questions remain, particularly with regards to disease mechanisms in NMO IgG seronegative cases. Increasing knowledge of the molecular pathology is leading to improved treatment strategies.  相似文献   

3.
Brain small vessel disease (SVD) refers to a variety of structural and functional changes affecting small arteries and micro vessels, and manifesting as white matter changes, microbleeds and lacunar infarcts. Growing evidence indicates that SVD might play a significant role in the neurobiology of central nervous system (CNS) neurodegenerative disorders, namely Alzheimer’s disease (AD) and Parkinson’s disease (PD), and neuroinflammatory diseases, such as multiple sclerosis (MS). These disorders share different pathophysiological pathways and molecular mechanisms (i.e., protein misfolding, derangement of cellular clearance systems, mitochondrial impairment and immune system activation) having neurodegeneration as biological outcome. In these diseases, the actual contribution of SVD to the clinical picture, and its impact on response to pharmacological treatments, is not known yet. Due to the high frequency of SVD in adult-aged patients, it is important to address this issue. In this review, we report preclinical and clinical data on the impact of SVD in AD, PD and MS, with the main aim of clarifying the predictability of SVD on clinical manifestations and treatment response.  相似文献   

4.
5.
Amyotrophic lateral sclerosis (ALS) is a progressive disease leading to the degeneration of motor neurons (MNs). Neuroinflammation is involved in the pathogenesis of ALS; however, interactions of specific immune cell types and MNs are not well studied. We recently found a shift toward T helper (Th)1/Th17 cell-mediated, pro-inflammatory immune responses in the peripheral immune system of ALS patients, which positively correlated with disease severity and progression. Whether Th17 cells or their central mediator, Interleukin-17 (IL-17), directly affects human motor neuron survival is currently unknown. Here, we evaluated the contribution of Th17 cells and IL-17 on MN degeneration using the co-culture of iPSC-derived MNs of fused in sarcoma (FUS)-ALS patients and isogenic controls with Th17 lymphocytes derived from ALS patients, healthy controls, and multiple sclerosis (MS) patients (positive control). Only Th17 cells from MS patients induced severe MN degeneration in FUS-ALS as well as in wildtype MNs. Their main effector, IL-17A, yielded in a dose-dependent decline of the viability and neurite length of MNs. Surprisingly, IL-17F did not influence MNs. Importantly, neutralizing IL-17A and anti-IL-17 receptor A treatment reverted all effects of IL-17A. Our results offer compelling evidence that Th17 cells and IL-17A do directly contribute to MN degeneration.  相似文献   

6.
7.
The nuclear retinoic acid receptor‐related orphan receptor γ (RORγ; NR1F3) is a key regulator of inflammatory gene programs involved in T helper 17 (TH17) cell proliferation. As such, synthetic small‐molecule repressors (inverse agonists) targeting RORγ have been extensively studied for their potential as therapeutic agents for various autoimmune diseases. Alternatively, enhancing TH17 cell proliferation through activation (agonism) of RORγ may boost an immune response, thereby offering a potentially new approach in cancer immunotherapy. Herein we describe the development of N‐arylsulfonyl indolines as RORγ agonists. Structure–activity studies reveal a critical linker region in these molecules as the major determinant for agonism. Hydrogen/deuterium exchange coupled to mass spectrometry (HDX‐MS) analysis of RORγ–ligand complexes help rationalize the observed results.  相似文献   

8.
Inflammatory bowel diseases (IBD) are characterized by wasting and chronic intestinal inflammation triggered by various cytokine-mediated pathways. In recent years, it was shown that T helper 17 (Th17) cells are involved in the pathogenesis of IBD, which makes them an attractive therapeutic target. Th17 cells preferentially produce interleukin (IL)-17A–F as signature cytokines. The role of the interplay between host genetics and intestinal microbiota in the pathogenesis of IBD was demonstrated. Probiotics are live microorganisms that when orally ingested in adequate amounts, confer a health benefit to the host by modulating the enteric flora or by stimulating the local immune system. Several studies indicated the effectiveness of probiotics in preventing and treating IBD (ulcerative colitis, and Crohn’s disease). Furthermore, there is mounting evidence of probiotics selectively targeting the Th17 lineage in the prevention and management of inflammatory and autoimmune diseases such as IBD. This review highlights critical roles of Th17 cells in the pathogenesis of IBD and the rationale for using probiotics as a novel therapeutic approach for IBD through manipulation of Th17 cells. The potential molecular mechanisms by which probiotics modulate Th17 cells differentiation and production are also discussed.  相似文献   

9.
Peroxisome proliferator-activated receptor gamma (PPARγ) has recently been recognized to regulate adaptive immunity through Th17 differentiation, Treg functions, and TFH responses. However, its role in adaptive immunity and autoimmune disease is still not clear, possibly due to sexual differences. Here, we investigated in vitro treatment study with the PPARγ agonist pioglitazone to compare Th1, Th2, and Th17 differentiation in male and female mouse splenic T cells. Pioglitazone treatment significantly inhibited various effector T cell differentiations including Th1, Th2, and Th17 cells from female naïve T cells, but it selectively reduced IL-17 production in male Th17 differentiation. Interestingly, pioglitazone and estradiol (E2) co-treatment of T cells in males inhibited differentiation of Th1, Th2, and Th17 cells, suggesting a mechanism for the greater sensitivity of PPARγ to ligand treatment in the regulation of effector T cell differentiation in females. Collectively, these results demonstrate that PPARγ selectively inhibits Th17 differentiation only in male T cells and modulates Th1, Th2, and Th17 differentiation in female T cells based on different level of estrogen exposure. Accordingly, PPARγ could be an important immune regulator of sexual differences in adaptive immunity.  相似文献   

10.
Dopamine is a neurotransmitter that mediates neuropsychological functions of the central nervous system (CNS). Recent studies have shown the modulatory effect of dopamine on the cells of innate and adaptive immune systems, including Th17 cells, which play a critical role in inflammatory diseases of the CNS. This article reviews the literature data on the role of dopamine in the regulation of neuroinflammation in multiple sclerosis (MS). The influence of dopaminergic receptor targeting on experimental autoimmune encephalomyelitis (EAE) and MS pathogenesis, as well as the therapeutic potential of dopaminergic drugs as add-on pathogenetic therapy of MS, is discussed.  相似文献   

11.
Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly RTN4 and RTN3, are involved in neurodegeneration and neuroinflammation processes. The crucial role of RTNs in the development of several neurodegenerative diseases, including Alzheimer’s disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or other neurological conditions such as brain injury or spinal cord injury, has attracted scientific interest. Reticulons, particularly RTN-4A (Nogo-A), could provide both an understanding of early pathogenesis of neurodegenerative disorders and be potential therapeutic targets which may offer effective treatment or inhibit disease progression. This review focuses on the molecular mechanisms and functions of RTNs and their potential usefulness in clinical practice as a diagnostic tool or therapeutic strategy.  相似文献   

12.
Acne Vulgaris (AV) and Hidradenitis suppurativa (HS) are common chronic inflammatory skin conditions that affect the follicular units that often coexist or are involved in differential diagnoses. Inflammation in both these diseases may result from shared pathways, which may partially explain their frequent coexistence. MicroRNAs (miRNAs) are a class of endogenous, short, non-protein coding, gene-silencing or promoting RNAs that may promote various inflammatory diseases. This narrative review investigates the current knowledge regarding miRNAs and their link to AV and HS. The aim is to examine the role of these molecules in the pathogenesis of AV and HS and to identify possible common miRNAs that could explain the similar characteristics of these two diseases. Five miRNA (miR-155 miR-223-, miR-21, and miRNA-146a) levels were found to be altered in both HS and AV. These miRNAs are related to pathogenetic aspects common to both pathologies, such as the regulation of the innate immune response, regulation of the Th1/Th17 axis, and fibrosis processes that induce scar formation. This review provides a starting point for further studies aimed at investigating the role of miRNAs in AV and HS for their possible use as diagnostic-therapeutic targets.  相似文献   

13.
Throughout life, it is necessary to adapt to the Earth’s environment in order to survive. A typical example of this is that the daily Earth cycle is different from the circadian rhythm in human beings; however, the ability to adapt to the Earth cycle has contributed to the development of human evolution. In addition, humans can consume and digest Earth-derived foods and use luxury materials for nutrition and enrichment of their lives, as an adaptation to the Earth’s environment. Recent studies have shown that daily lifestyles are closely related to human health; however, less attention has been paid to the fact that obesity due to excessive energy intake, smoking, and alcohol consumption contributes to the development of inflammatory skin diseases. Gluten or wheat protein, smoking and alcohol, sleep disturbance, and obesity drive the helper T (Th)1/Th2/Th17 immune response, whereas dietary fiber and omega-3 fatty acids negatively regulate inflammatory cytokine production. In this review, we have focused on daily lifestyles and the mechanisms involved in the pathogenesis of inflammatory skin diseases.  相似文献   

14.
Altered regulatory T cell (Treg) function could contribute to MS. The expression of activating and inhibitory receptors influences the activity of Tregs. Our aim was to investigate T cell phenotypes in relapsing–remitting MS (RRMS) patients at an early phase of the disease. We examined the influence of demographic parameters on the distribution of CD4+ and CD8+ T cell subclasses by generalized linear modeling. We also studied the expression of the following markers—CTLA-4, GITR, PD-1, FoxP3, Helios, CD28, CD62L, CD103—on T cell subsets from peripheral blood with a 14-color flow cytometry panel. We used an antibody array to define the profiles of 34 Th1/Th2/Th17 cytokines in the serum. Expression of PD-1 and GITR on CD4+ and CD8+ Tregs was decreased in RRMS patients. The proinflammatory factors IFN-γ, IL-17, IL-17F, TGFβ-1, TGFβ-3, IL-1SRII, IL-12 p40, sgp130, IL-6sR were significantly increased in RRMS patients. Therefore, a deficiency of PD-1 and GITR immune checkpoints on CD4+ and CD8+ Tregs is a feature of RRMS and might underlie impaired T cell control.  相似文献   

15.
Hashimoto’s thyroiditis (HT) is an organ-specific immune disease characterized by the presence of lymphocytic infiltration and serum autoantibodies. Previous studies have confirmed the critical role of Th17 cells in the pathopoiesis of HT patients. Additionally, regulatory T cells (Treg) display a dysregulatory function in autoimmune disease. The purpose of this study is to investigate the alteration of Th17 and Treg cells in HT patients and explore contributing factors. We found there was an increased ratio of Th17/Treg in HT patients and a positive correlation with autoantibodies (anti-TgAb). In addition, there was an increased level of GITRL, which has been demonstrated to be correlated with the increassement of Th17 cells in the serum and thyroid glands of HT patients; the upregulated serum level of GITRL has a positive correlation with the percentage of Th17 cells in HT patients. In summary, an increase in GITRL may impair the balance of Th17/Treg, and contribute to the pathopoiesis of Hashimoto’s thyroiditis.  相似文献   

16.
Extracellular vesicles (EVs) are a heterogeneous group of bilayer membrane-wrapped molecules that play an important role in cell-to-cell communication, participating in many physiological processes and in the pathogenesis of several diseases, including multiple sclerosis (MS). In recent years, many studies have focused on EVs, with promising results indicating their potential role as biomarkers in MS and helping us better understand the pathogenesis of the disease. Recent evidence suggests that there are novel subpopulations of EVs according to cell origin, with those derived from cells belonging to the nervous and immune systems providing information regarding inflammation, demyelination, axonal damage, astrocyte and microglia reaction, blood–brain barrier permeability, leukocyte transendothelial migration, and ultimately synaptic loss and neuronal death in MS. These biomarkers can also provide insight into disease activity and progression and can differentiate patients’ disease phenotype. This information can enable new pathways for therapeutic target discovery, and consequently the development of novel treatments. Recent evidence also suggests that current disease modifying treatments (DMTs) for MS modify the levels and content of circulating EVs. EVs might also serve as biomarkers to help monitor the response to DMTs, which could improve medical decisions concerning DMT initiation, choice, escalation, and withdrawal. Furthermore, EVs could act not only as biomarkers but also as treatment for brain repair and immunomodulation in MS. EVs are considered excellent delivery vehicles. Studies in progress show that EVs containing myelin antigens could play a pivotal role in inducing antigen-specific tolerance of autoreactive T cells as a novel strategy for the treatment as “EV-based vaccines” for MS. This review explores the breakthrough role of nervous and immune system cell-derived EVs as markers of pathological disease mechanisms and potential biomarkers of treatment response in MS. In addition, this review explores the novel role of EVs as vehicles for antigen delivery as a therapeutic vaccine to restore immune tolerance in MS autoimmunity.  相似文献   

17.
A growing body of evidence suggests a pathogenic role for pro-inflammatory T helper 17 cells (Th17) in several autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type I diabetes, and psoriasis—diseases for which no curative treatment is currently available. The nuclear retinoic acid receptor–related orphan receptors alpha and gamma (RORα/γ), in particular the truncated isoform RORγt that is specifically expressed in the thymus, play a critical role in the activation of a pro-inflammatory Th17 response, and RORγ inverse agonists have shown promise as negative regulators of Th17 for the treatment of autoimmune diseases. Our study underscores the screening of a large combinatorial library of 1,5-disubstituted acylated 2-amino-4,5-dihydroimidazoles using a demonstrated synthetic and screening approach and the utility of the positional scanning libraries strategy for the rapid identification of a novel class of ROR inhibitors. We identified compound 1295-273 with the highest activity against RORγ (3.3 µM IC50) in this series, and almost a two-fold selectivity towards this receptor isoform, with 5.3 and 5.8 µM IC50 against RORα and RORβ cells, respectively.  相似文献   

18.
Immunotherapy in cancer patients is a very promising treatment and the development of new protocols and the study of the mechanisms of regression is imperative. The objective of this study was to evaluate the production of cytokines in helper T (CD4+) lymphocytes during immunotherapy with pegylated IFN-α in patients with cervical intraepithelial neoplasia (CIN). We conducted a prospective study with 17 patients with CIN II-III using immunotherapy with pegylated IFN-α subcutaneouly weekly, and using flow cytometry we evaluated the peripheric CD4+ T lymphocytes. The results show that in the regression group the patients presented a significant increase in the amount of IFN-γ during the entire immunotherapy, compared with the group without a response. The amount of CD4+ T lymphocytes positive for IL-2, IL-4, IL-10 and TGF-β is significantly lower in patients with good clinical response. The results also demonstrate that patients with regression have a higher amount of intracellular TNF-α in CD4+ T lymphocytes before the start of treatment. Analyzing these data sets, it can be concluded that immunotherapy is a viable clinical treatment for patients with high-grade CIN and that the regression is dependent on the change in the immune response to a Th1 pattern.  相似文献   

19.
The microbiota is increasingly recognized as a critical player in cancer onset and progression and response to cancer chemotherapy treatment. In recent years, several preclinical and clinical studies have evidenced the involvement of microbiota in lung cancer, one of the world’s deadliest cancers. However, the mechanisms by which the microbiota can impact this type of cancer and patient survival and response to treatments remain poorly investigated. In this review, the peculiarities of the gut and lung microbial ecosystems have been highlighted, and recent findings illustrating the possible mechanisms underlying the microbiota–lung cancer interaction and the host immune response have been discussed. In addition, the mucosal immune system has been identified as a crucial communication frame to ease interactive dynamics between the immune system and the microbiota. Finally, the use of specific next-generation intestinal probiotic strains in counteracting airway diseases has been evaluated. We believe that restoring homeostasis and the balance of bacterial microflora should become part of the routine of integrated cancer interventions, using probiotics, prebiotics, and postbiotics, and promoting a healthy diet and lifestyle.  相似文献   

20.
It is being increasingly demonstrated that extracellular vesicles (EVs) are deeply involved in the physiology of the central nervous system (CNS). Processes such as synaptic activity, neuron-glia communication, myelination and immune response are modulated by EVs. Likewise, these vesicles may participate in many pathological processes, both as triggers of disease or, on the contrary, as mechanisms of repair. EVs play relevant roles in neurodegenerative disorders such as Alzheimer’s or Parkinson’s diseases, in viral infections of the CNS and in demyelinating pathologies such as multiple sclerosis (MS). This review describes the involvement of these membrane vesicles in major demyelinating diseases, including MS, neuromyelitis optica, progressive multifocal leukoencephalopathy and demyelination associated to herpesviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号