首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological material is one of the most important aspects that allow for the correct diagnosis of the disease, and tears are an interesting subject of research because of the simplicity of collection, as the well as the relation to the components similar to other body fluids. In this review, biomarkers for Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS) in tears are investigated and analyzed. Records were obtained from the PubMed and Google Scholar databases in a timeline of 2015–2022. The keywords were: tear film/tear biochemistry/tear biomarkers + diseases (AD, PD, or MS). The recent original studies were analyzed, discussed, and biomarkers present in tears that can be used for the diagnosis and management of AD, PD, and MS diseases were shown. α-synTotal and α-synOligo, lactoferrin, norepinephrine, adrenaline, epinephrine, dopamine, α-2-macroglobulin, proteins involved in immune response, lipid metabolism and oxidative stress, apolipoprotein superfamily, and others were shown to be biomarkers in PD. For AD as potential biomarkers, there are: lipocalin-1, lysozyme-C, and lacritin, amyloid proteins, t-Tau, p-Tau; for MS there are: oligoclonal bands, lipids containing choline, free carnitine, acylcarnitines, and some amino acids. Information systematized in this review provides interesting data and new insight to help improve clinical outcomes for patients with neurodegenerative disorders.  相似文献   

2.
Neuromyelitis optica (NMO) is a rare autoimmune disorder, distinct from multiple sclerosis, causing inflammatory lesions in the optic nerves and spinal cord. An autoantibody (NMO IgG) against aquaporin-4 (AQP4), a water channel expressed on astrocytes is thought to be causative. Peripheral production of the antibody is triggered by an unknown process in genetically susceptible individuals. Anti-AQP4 antibody enters the central nervous system (CNS) when the blood brain barrier is made permeable and has high affinity for orthogonal array particles of AQP4. Like other autoimmune diseases, Th17 cells and their effector cytokines (such as interleukin 6) have been implicated in pathogenesis. AQP4 expressing peripheral organs are not affected by NMO IgG, but the antibody causes extensive astrocytic loss in specific regions of the CNS through complement mediated cytotoxicity. Demyelination occurs during the inflammatory process and is probably secondary to oligodendrocyte apoptosis subsequent to loss of trophic support from astrocytes. Ultimately, extensive axonal injury leads to severe disability. Despite rapid advances in the understanding of NMO pathogenesis, unanswered questions remain, particularly with regards to disease mechanisms in NMO IgG seronegative cases. Increasing knowledge of the molecular pathology is leading to improved treatment strategies.  相似文献   

3.
Brain small vessel disease (SVD) refers to a variety of structural and functional changes affecting small arteries and micro vessels, and manifesting as white matter changes, microbleeds and lacunar infarcts. Growing evidence indicates that SVD might play a significant role in the neurobiology of central nervous system (CNS) neurodegenerative disorders, namely Alzheimer’s disease (AD) and Parkinson’s disease (PD), and neuroinflammatory diseases, such as multiple sclerosis (MS). These disorders share different pathophysiological pathways and molecular mechanisms (i.e., protein misfolding, derangement of cellular clearance systems, mitochondrial impairment and immune system activation) having neurodegeneration as biological outcome. In these diseases, the actual contribution of SVD to the clinical picture, and its impact on response to pharmacological treatments, is not known yet. Due to the high frequency of SVD in adult-aged patients, it is important to address this issue. In this review, we report preclinical and clinical data on the impact of SVD in AD, PD and MS, with the main aim of clarifying the predictability of SVD on clinical manifestations and treatment response.  相似文献   

4.
5.
A growing body of evidence demonstrates the important role of the noradrenergic system in the pathogenesis of many neurodegenerative processes, especially Alzheimer’s disease, due to its ability to control glial activation and chemokine production resulting in anti-inflammatory and neuroprotective effects. Noradrenaline involvement in this disease was first proposed after finding deficits of noradrenergic neurons in the locus coeruleus from Alzheimer’s disease patients. Based on this, it has been hypothesized that the early loss of noradrenergic projections and the subsequent reduction of noradrenaline brain levels contribute to cognitive dysfunctions and the progression of neurodegeneration. Several studies have focused on analyzing the role of noradrenaline in the development and progression of Alzheimer’s disease. In this review we summarize some of the most relevant data describing the alterations of the noradrenergic system normally occurring in Alzheimer’s disease as well as experimental studies in which noradrenaline concentration was modified in order to further analyze how these alterations affect the behavior and viability of different nervous cells. The combination of the different studies here presented suggests that the maintenance of adequate noradrenaline levels in the central nervous system constitutes a key factor of the endogenous defense systems that help prevent or delay the development of Alzheimer’s disease. For this reason, the use of noradrenaline modulating drugs is proposed as an interesting alternative therapeutic option for Alzheimer’s disease.  相似文献   

6.
Alzheimer’s disease (AD) is characterized by the presence of β-amyloid (Aβ) and tau, and subcortical vascular cognitive impairment (SVCI) is characterized by cerebral small vessel disease (CSVD). They are the most common causes of cognitive impairment in the elderly population. Concurrent CSVD burden is more commonly observed in AD-type dementia than in other neurodegenerative diseases. Recent developments in Aβ and tau positron emission tomography (PET) have enabled the investigation of the relationship between AD biomarkers and CSVD in vivo. In this review, we focus on the interaction between AD and CSVD markers and the clinical effects of these two markers based on molecular imaging studies. First, we cover the frequency of AD imaging markers, including Aβ and tau, in patients with SVCI. Second, we discuss the relationship between AD and CSVD markers and the potential distinct pathobiology of AD markers in SVCI compared to AD-type dementia. Next, we discuss the clinical effects of AD and CSVD markers in SVCI, and hemorrhagic markers in cerebral amyloid angiopathy. Finally, this review provides both the current challenges and future perspectives for SVCI.  相似文献   

7.
Plasma small RNAs have been recently explored as biomarkers in Huntington’s disease (HD). We performed an exploratory study on nine HD patients, eight healthy subjects (HS), and five psychiatric patients (PP; to control for iatrogenic confounder effects) through an Affymetrix-Gene-Chip-miRNA-Array. We validated the results in an independent population of 23 HD, 15 pre-HD, 24 PP, 28 Alzheimer’s disease (AD) patients (to control the disease-specificity) and 22 HS through real-time PCR. The microarray results showed higher levels of U13 small nucleolar RNA (SNORD13) in HD patients than controls (fold change 1.54, p = 0.003 HD vs. HS, and 1.44, p = 0.0026 HD vs. PP). In the validation population, a significant increase emerged with respect to both pre-HD and the control groups (p < 0.0001). SNORD13 correlated with the status of the mutant huntingtin carrier (r = 0.73; p < 0.001) and the disease duration (r = 0.59; p = 0.003). The receiver operating characteristic (ROC) curve analysis showed the high accuracy of SNORD13 in discriminating HD patients from other groups (AUC = 0.963). An interactome and pathway analysis on SNORD13 revealed enrichments for factors relevant to HD pathogenesis. We report the unprecedented finding of a potential disease-specific role of SNORD13 in HD. It seems to peripherally report a ‘tipping point’ in the pathogenic cascade at the neuronal level.  相似文献   

8.
Alzheimer’s disease (AD) has become a problem, owing to its high prevalence in an aging society with no treatment available after onset. However, early diagnosis is essential for preventive intervention to delay disease onset due to its slow progression. The current AD diagnostic methods are typically invasive and expensive, limiting their potential for widespread use. Thus, the development of biomarkers in available biofluids, such as blood, urine, and saliva, which enables low or non-invasive, reasonable, and objective evaluation of AD status, is an urgent task. Here, we reviewed studies that examined biomarker candidates for the early detection of AD. Some of the candidates showed potential biomarkers, but further validation studies are needed. We also reviewed studies for non-invasive biomarkers of AD. Given the complexity of the AD continuum, multiple biomarkers with machine-learning-classification methods have been recently used to enhance diagnostic accuracy and characterize individual AD phenotypes. Artificial intelligence and new body fluid-based biomarkers, in combination with other risk factors, will provide a novel solution that may revolutionize the early diagnosis of AD.  相似文献   

9.
There is a huge need for novel therapeutic and preventative approaches to Alzheimer’s disease (AD) and neuroinflammation seems to be one of the most fascinating solutions. The primary cell type that performs immunosurveillance and helps clear out unwanted chemicals from the brain is the microglia. Microglia work to reestablish efficiency and stop further degeneration in the early stages of AD but mainly fail in the illness’s later phases. This may be caused by a number of reasons, e.g., a protracted exposure to cytokines that induce inflammation and an inappropriate accumulation of amyloid beta (Aβ) peptide. Extracellular amyloid and/or intraneuronal phosphorylated tau in AD can both activate microglia. The activation of TLRs and scavenger receptors, inducing the activation of numerous inflammatory pathways, including the NF-kB, JAK-STAT, and NLRP3 inflammasome, facilitates microglial phagocytosis and activation in response to these mediators. Aβ/tau are taken up by microglia, and their removal from the extracellular space can also have protective effects, but if the illness worsens, an environment that is constantly inflamed and overexposed to an oxidative environment might encourage continuous microglial activation, which can lead to neuroinflammation, oxidative stress, iron overload, and neurotoxicity. The complexity and diversity of the roles that microglia play in health and disease necessitate the urgent development of new biomarkers that identify the activity of different microglia. It is imperative to comprehend the intricate mechanisms that result in microglial impairment to develop new immunomodulating therapies that primarily attempt to recover the physiological role of microglia, allowing them to carry out their core function of brain protection.  相似文献   

10.
One of the major mediators of neuroinflammation in PD is tumour necrosis factor alpha (TNF-α), which, similar to other cytokines, is produced by activated microglia and astrocytes. Although TNF-α can be neuroprotective in the brain, long-term neuroinflammation and TNF release can be harmful, having a neurotoxic role that leads to death of oligodendrocytes, astrocytes, and neurons and, therefore, is associated with neurodegeneration. Apart from cytokines, a wide family of molecules with homologous structures, namely chemokines, play a key role in neuro-inflammation by drawing cytotoxic T-lymphocytes and activating microglia. The objective of the current study was to examine the levels of the serum TNF-α and CCL2 (Chemokine (C-C motif) ligand 2), also known as MCP-1 (Monocyte Chemoattractant Protein-1), in PD patients compared with healthy controls. We also investigated the associations between the serum levels of these two inflammatory mediators and a number of clinical symptoms, in particular, disease severity and cognition. Such an assessment may point to their prognostic value and provide some treatment hints. PD patients with advanced stage on the Hoehn–Yahr scale showed an increase in TNF-α levels compared with PD patients with stages 1 and 2 (p = 0.01). Additionally, the UPDRS score was significantly associated with TNF-α levels. CCL2 levels, however, showed no significant associations.  相似文献   

11.
Parkinson’s disease (PD) and multiple system atrophy (MSA) belong to the neurodegenerative group of synucleinopathies; differential diagnosis between PD and MSA is difficult, especially at early stages, owing to their clinical and biological similarities. Thus, there is a pressing need to identify metabolic biomarkers for these diseases. The metabolic profile of the cerebrospinal fluid (CSF) is reported to be altered in PD and MSA; however, the altered metabolites remain unclear. We created a single network with altered metabolites in PD and MSA based on the literature and assessed biological functions, including metabolic disorders of the nervous system, inflammation, concentration of ATP, and neurological disorder, through bioinformatics methods. Our in-silico prediction-based metabolic networks are consistent with Parkinsonism events. Although metabolomics approaches provide a more quantitative understanding of biochemical events underlying the symptoms of PD and MSA, limitations persist in covering molecules related to neurodegenerative disease pathways. Thus, omics data, such as proteomics and microRNA, help understand the altered metabolomes mechanism. In particular, integrated omics and machine learning approaches will be helpful to elucidate the pathological mechanisms of PD and MSA. This review discusses the altered metabolites between PD and MSA in the CSF and omics approaches to discover diagnostic biomarkers.  相似文献   

12.
Research on the Aβ cascade and alternations of biomarkers in neuro-inflammation, synaptic dysfunction, and neuronal injury followed by Aβ have progressed. But the question is how to use the biomarkers. Here, we examine the evidence and pathogenic implications of protein interactions and the time order of alternation. After the deposition of Aβ, the change of tau, neurofilament light chain (NFL), and neurogranin (Ng) is the main alternation and connection to others. Neuro-inflammation, synaptic dysfunction, and neuronal injury function is exhibited prior to the structural and metabolic changes in the brain following Aβ deposition. The time order of such biomarkers compared to the tau protein is not clear. Despite the close relationship between biomarkers and plaque Aβ deposition, several factors favor one or the other. There is an interaction between some proteins that can predict the brain amyloid burden. The Aβ cascade hypothesis could be the pathway, but not all subjects suffer from Alzheimer’s disease (AD) within a long follow-up, even with very elevated Aβ. The interaction of biomarkers and the time order of change require further research to identify the right subjects and right molecular target for precision medicine therapies.  相似文献   

13.
Alzheimer’s disease (AD) is the leading cause of dementia, but the pathogenetic factors are not yet well known, and the relationships between brain and systemic biochemical derangements and disease onset and progression are unclear. We aim to focus on blood biomarkers for an accurate prognosis of the disease. We used a dataset characterized by longitudinal findings collected over the past 10 years from 90 AD patients. The dataset included 277 observations (both clinical and biochemical ones, encompassing blood analytes encompassing routine profiles for different organs, together with immunoinflammatory and oxidative markers). Subjects were grouped into four severity classes according to the Clinical Dementia Rating (CDR) Scale: mild (CDR = 0.5 and CDR = 1), moderate (CDR = 2), severe (CDR = 3) and very severe (CDR = 4 and CDR = 5). Statistical models were used for the identification of potential blood markers of AD progression. Moreover, we employed the Pathfinder tool of the Reactome database to investigate the biological pathways in which the analytes of interest could be involved. Statistical results reveal an inverse significant relation between four analytes (high-density cholesterol, total cholesterol, iron and ferritin) with AD severity. In addition, the Reactome database suggests that such analytes could be involved in pathways that are altered in AD progression. Indeed, the identified blood markers include molecules that reflect the heterogeneous pathogenetic mechanisms of AD. The combination of such blood analytes might be an early indicator of AD progression and constitute useful therapeutic targets.  相似文献   

14.
In this review, we focus on the emerging roles of microglia in the brain, with particular attention to synaptic plasticity in health and disease. We present evidence that ramified microglia, classically believed to be “resting” (i.e., inactive), are instead strongly implicated in dynamic and plastic processes. Indeed, there is an intimate relationship between microglia and neurons at synapses which modulates activity-dependent functional and structural plasticity through the release of cytokines and growth factors. These roles are indispensable to brain development and cognitive function. Therefore, approaches aimed at maintaining the ramified state of microglia might be critical to ensure normal synaptic plasticity and cognition. On the other hand, inflammatory signals associated with Alzheimer’s disease are able to modify the ramified morphology of microglia, thus leading to synapse loss and dysfunction, as well as cognitive impairment. In this context, we highlight microglial TREM2 and CSF1R as emerging targets for disease-modifying therapy in Alzheimer’s disease (AD) and other neurodegenerative disorders.  相似文献   

15.
Parkinson’s disease (PD) is a neurodegenerative disorder, caused by, so far, unknown pathogenetic mechanisms. There is no doubt that pro-inflammatory immune-mediated mechanisms are pivotal to the pathogenicity and progression of the disease. In this review, we highlight the binary role of microglia activation in the pathophysiology of the disorder, both neuroprotective and neuromodulatory. We present how the expression of several cytokines implicated in dopaminergic neurons (DA) degeneration could be used as biomarkers for PD. Viral infections have been studied and correlated to the disease progression, usually operating as trigger factors for the inflammatory process. The gut–brain axis and the possible contribution of the peripheral bowel inflammation to neuronal death, mainly dopaminergic neurons, seems to be a main contributor of brain neuroinflammation. The role of the immune system has also been analyzed implicating a-synuclein in the activation of innate and adaptive immunity. We also discuss therapeutic approaches concerning PD and neuroinflammation, which have been studied in experimental and in vitro models and data stemming from epidemiological studies.  相似文献   

16.
Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and Huntington’s disease represent some of the most prevalent neurodegenerative disorders afflicting millions of people worldwide. Unfortunately, there is a lack of efficacious treatments to cure or stop the progression of these disorders. While the causes of such a lack of therapies can be attributed to various reasons, the disappointing results of recent clinical trials suggest the need for novel and innovative approaches. Since its discovery, there has been a growing excitement around the potential for CRISPR-Cas9 mediated gene editing to identify novel mechanistic insights into disease pathogenesis and to mediate accurate gene therapy. To this end, the literature is rich with experiments aimed at generating novel models of these disorders and offering proof-of-concept studies in preclinical animal models validating the great potential and versatility of this gene-editing system. In this review, we provide an overview of how the CRISPR-Cas9 systems have been used in these neurodegenerative disorders.  相似文献   

17.
Early diagnosis of Alzheimer’s disease (AD) is of paramount importance in preserving the patient’s mental and physical health in a fairly manageable condition for a longer period. Reliable AD detection requires novel biomarkers indicating central nervous system (CNS) degeneration in the periphery. Members of the syndecan family of transmembrane proteoglycans are emerging new targets in inflammatory and neurodegenerative disorders. Reviewing the growing scientific evidence on the involvement of syndecans in the pathomechanism of AD, we analyzed the expression of the neuronal syndecan, syndecan-3 (SDC3), in experimental models of neurodegeneration. Initial in vitro studies showed that prolonged treatment of tumor necrosis factor-alpha (TNF-α) increases SDC3 expression in model neuronal and brain microvascular endothelial cell lines. In vivo studies revealed elevated concentrations of TNF-α in the blood and brain of APPSWE-Tau transgenic mice, along with increased SDC3 concentration in the brain and the liver. Primary brain endothelial cells and peripheral blood monocytes isolated from APPSWE-Tau mice exhibited increased SDC3 expression than wild-type controls. SDC3 expression of blood-derived monocytes showed a positive correlation with amyloid plaque load in the brain, demonstrating that SDC3 on monocytes is a good indicator of amyloid pathology in the brain. Given the well-established role of blood tests, the SDC3 expression of monocytes could serve as a novel biomarker for early AD detection.  相似文献   

18.
Multiple-system trophy (MSA) and Parkinson’s Disease (PD) are both progressive, neurodegenerative diseases characterized by neuropathological deposition of aggregated alpha-synuclein (αSyn). The causes behind this aggregation are still unknown. We have reported aberrancies in MSA and PD patients in naturally occurring autoantibodies (nAbs) against αSyn (anti-αSyn-nAbs), which are important partakers in anti-aggregatory processes, immune-mediated clearance, and anti-inflammatory functions. To elaborate further on the timeline of autoimmune aberrancies towards αSyn, we investigated here the Immunoglobulin (Ig) affinity profile and subclass composition (IgG-total, IgG1-4 and IgM) of anti-αSyn-nAbs in serum samples from prodromal (p) phases of MSA and PD. Using an electrochemiluminescence competition immunoassay, we confirmed that the repertoire of high-affinity anti-αSyn-nAbs is significantly reduced in pMSA and pPD. Further, we demonstrated that pPD had increased anti-αSyn IgG-total levels compared to pMSA and controls, concordant with increased anti-αSyn IgG1 levels in pPD. Anti-αSyn IgG2 and IgG4 levels were reduced in pMSA and pPD compared with controls, whereas anti-αSyn IgG3 levels were reduced in pMSA compared to pPD and controls. The results indicate that the impaired reactivity towards αSyn occurs prior to disease onset. The apparent lack of high-affinity anti-αSyn nAbs may result in reduced clearance of αSyn, leading to aggregation of the protein. Thus, this study provides novel insights into possible causes behind the pathogenesis in synucleinopathies such as MSA and PD.  相似文献   

19.
Adult-onset Still’s disease (AOSD) is a systemic inflammatory disease of unknown etiology. Recent studies have demonstrated that the hallmark of AOSD is a cytokine storm, which is characterized by the excessive production of interleukin (IL)-1, IL-6, IL-18, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), suggesting how pro-inflammatory cytokines play an important role in the pathogenesis of this disease. Actually, a certain proportion of patients (around 17–32%) with severe clinical symptoms achieves only partial remission or is resistant to both first-line corticosteroids and second-line DMARDs. These patients are defined as refractory AOSD patients, requiring higher dosage glucocorticoids, longer treatment duration, or the simultaneous introduction of immunosuppressive drugs, further leading to AOSD relapses. In this narrative review, we will analyze the latest literature data to unravel potential pathogenetic factors associated with specific patterns of AOSD disease or relapses in order to identify biomarkers that may guide clinical decisions, eventually leading to new therapeutic options.  相似文献   

20.
Alzheimer’s disease (AD) is the leading cause of dementia and cognitive function impairment. The multi-faced character of AD requires new drug solutions based on substances that incorporate a wide range of activities. Antioxidants, AChE/BChE inhibitors, BACE1, or anti-amyloid platelet aggregation substances are most desirable because they improve cognition with minimal side effects. Plant secondary metabolites, used in traditional medicine and pharmacy, are promising. Among these are the monoterpenes—low-molecular compounds with anti-inflammatory, antioxidant, enzyme inhibitory, analgesic, sedative, as well as other biological properties. The presented review focuses on the pathophysiology of AD and a selected group of anti-neurodegenerative monoterpenes and monoterpenoids for which possible mechanisms of action have been explained. The main body of the article focuses on monoterpenes that have shown improved memory and learning, anxiolytic and sleep-regulating effects as determined by in vitro and in silico tests—followed by validation in in vivo models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号