首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
据统计,约40%的建筑能耗为空调系统能耗,空调系统能耗中大约有60%能耗来自制冷机房。由此可知,制冷机房节能是建筑节能的关键。目前,对制冷机房中冷冻侧大温差的节能技术有了大量的研究和实际应用。但是,对于冷却侧大温差的节能研究仍有待发展。目前设计师大多采用32/37℃的冷却水进出水温进行制冷系统的设计。为了给设计师提供冷却侧大温差的设计参考,通过能耗模拟软件对采用冷却侧大温差设计的制冷机房进行能耗预测,并根据模拟结果得到制冷机房最优的大温差设计方案。结果表明:当冷却侧温差由5℃增加至7℃时,冷却水进出水温为32/39℃的节能率(8%~9%)比31/38℃的节能率(约3%)更高。将制冷机房的冷却侧温差加大至8、9、10℃时,杭州、北京、广州均为8℃温差(冷却水进出水温为32/40℃)时最节能;而昆明则是10℃温差(冷却水进出水温为28/38℃)时最节能。  相似文献   

2.
制冷系统冷却水侧大温差运行能耗分析   总被引:1,自引:0,他引:1       下载免费PDF全文
在热泵空调运行中,热泵空调水系统的输送能耗对整个系统节能降耗具有较大影响,因此大力发展冷却水大温差技术,有利于降低机组能耗。本文通过理论分析和推导得出热泵空调性能参数与冷却水温差之间的关系,并在不同冷却水温差实验工况时,分析了热泵空调制冷系统及冷却水泵的能耗。结果表明:随着冷却水温差的增大,虽然热泵空调主机单位制冷能耗逐渐增大,但热泵空调系统单位制冷能耗逐渐减小;在温差为8 ℃时,热泵系统EER最大,为3.173;冷却水温差为7~9 ℃时,机组节能效果显著。  相似文献   

3.
利用数值模拟的方法研究了各区域流道结构尺寸对GDC电极冷却流道系统传热效果的影响。分析结果表明减小第一区域冷却流道厚度及宽度,增大电极体最外壁顶边的倒圆角半径及第二、三、四区域流道管径均可降低GDC电极的最大温度及平均温度。综合这些影响因素对冷却流道系统结构进行了优化设计,在保证足够安全裕量的前提下有效降低了GDC电极的最大温度及平均温度。针对优化后的GDC电极冷却流道设计,研究了GDC电极在不同工况下所受热负荷及冷却水入口温度大小对电极体各限制参数的影响,并确定了GDC电极冷却流道系统的适用范围。  相似文献   

4.
离心式压缩机是离心式冷水机组的核心设备,气悬浮离心式制冷压缩机具有高速,无油,成本低等优点,是离心式压缩机的重要发展方向之一。气悬浮离心式制冷压缩机高速、紧凑的结构使其散热环境更加恶劣,需要更有效的冷却方式。建立了压缩机电机数学模型,数值模拟了不同进出口条件下制冷剂流场与电机温度场的分布。结果表明:绕组中心位置温度最高,靠近电机腔出口侧的端部冷却效果好于空腔侧,顺时针45°-180°方向冷却效果最好;增大入口压力会增强冷却效果,入口压力每增大93kPa,绕组温度下降2℃左右;入口干度在0-0.6之间冷却效果变化较小,入口干度大于0.6时冷却效果明显下降;增大回气压力会降低冷却效果,回气压力每增大40kPa时绕组温度升高3℃-4℃。通过研究压缩机电机轴向和周向的冷却差异,及不同进出口条件下压缩机电机的冷却情况,为不同工况下气悬浮离心式制冷压缩机电机冷却方案提供了思路。  相似文献   

5.
为了研究表面冷速对超厚板心部冷却能力的影响,应用ANSYS有限元软件模拟分析了超厚板淬火水冷过程的截面温度场分布.结果表明:淬火过程中,心部与表面的截面温差随着表面冷速的增大而增大,但当冷速过大时,截面温差不再增大;随着表面冷速的增大,心部冷速在高温区和中温区表现出不同的变化规律,高温区(900~600℃),心部冷速随着表面冷速的增大而显著增大,但增幅逐渐减小,当表面冷速大于80℃/s后,心部冷速达到极值;中温区(600~300℃),心部冷速几乎不受表面冷速影响;此外,增大表面冷速对心部冷速的提升作用是有限的,厚度越大这一局限越为明显.  相似文献   

6.
在温和地区的气候条件下和特定的使用功能要求下,分析比较了空调水系统采用大温差和常规温差对于风机盘管﹑新风和空气处理机组﹑冷水机组﹑冷冻冷却水泵﹑冷却塔﹑空调热水泵等设备运行工况的影响,认为对本项目最适宜的选择是空调冷水5∽12℃、热水60∽45℃,冷却水28∽36℃。  相似文献   

7.
利用流体动力学仿真软件CFX对新设计的G10超声波燃气表腔体结构的气体流动进行仿真研究和分析。在大、中、小流量点上分别仿真新设计结构内的气体流动,获得超声波燃气表的整个腔体内、腔体的YZ轴向截面上、XZ轴向截面上和XY轴向截面上的气体流速分布,并进一步获得3个截面上属于超声波测量的内流道部分的气体流速分布。对仿真结果进一步分析发现,与整个腔体气体流动和整个轴向截面上气体流动相比,超声波测量部分截面内气体流动更快,但相对更均匀和稳定,有利于超声波气体流速的准确测量。最后给出基于该设计结构的超声波燃气表样机的检测结果,检测结果也验证了用仿真来辅助表体结构设计的可行性。  相似文献   

8.
在液化天然气流程中,影响流程性能的参数很多。文中分析天然气的入口压力、温度、各摩尔分率和各个换热器热端面的温差对流程制冷剂流量、压缩机耗功、冷却水的冷却量、丙烷预冷量的影响;并指出这些流程性能受哪些流程参数影响比较大。  相似文献   

9.
为探究截面形状对螺旋弹性管束(spiral elastic tube bundle,SETB)换热器传热性能的影响,基于四种截面形状(四边形、六边形、椭圆形和圆形),采用双向流固耦合计算方法,对单层四螺旋弹性管束在不同入口速度条件下的振动和传热特性进行了研究。结果表明:不同截面形状的螺旋弹性管束在换热器内不同安装位置的振动响应有明显的不同。截面为椭圆形的螺旋弹性管束在振动和不振动条件下的传热系数最高,管束圆周上的局部传热系数最大,说明管束截面形状为椭圆时的传热性能最佳。振动能够实现强化传热,但振动剧烈的螺旋弹性管束其传热性能并不一定最佳,在进行螺旋弹性管束换热器设计时,并不是要一味追求高强度的振动,还要综合考虑螺旋弹性管束的安装位置和截面形状。  相似文献   

10.
随着新能源汽车技术的快速发展,快充快放正逐渐成为动力电池的主流工作模式,产热功率增加,热性能对动力电池的影响也随之增大。采用数值模拟研究了快充快放条件下动力电池组在不同倍率充放电下的传热特性,比较了纯相变冷却和液冷与相变材料耦合的冷却对电池模块散热效果,分析了上述两种散热方式对电池模块温差和最高温度的控制作用。数值模拟结果表明,当5C快充,立即5C快放条件下,选择最佳流速0.05m/s,电池模块温度最高温度控制在47.33℃,温差为3.39℃,与采用纯相变冷却方式相比,电池最高温度降低34.57℃,温差降低1.14℃。结果表明快充快放条件下液冷与相变材料耦合系统具有良好的动力电池热管理效果。  相似文献   

11.
采用Fluent软件对圆形截面渐变为矩形截面的异径管道流场进行三维建模和数值仿真,分析了横截面收缩异径管的速度分布和流线,建立了矩形截面部分的长度、宽度、高度与进出口压力损失和中心截面平均速度之间的关系.研究表明,中间矩形截面部分的宽度和高度对进出口压损和中心截面平均速度影响较大,同时横截面积收缩比例太大会导致流场紊乱和回流现象,从而为合理设计局部横截面积收缩的电磁流量测量管道提供了理论依据.  相似文献   

12.
主轴系统的热误差是影响数控机床加工精度的主要因素。根据自然界昆虫的翅脉结构,设计了一种基于鳞翅目昆虫翅脉仿生流道的新型主轴系统冷却结构。建立了昆虫翅脉仿生流道冷却结构模型,在数值传热学相关理论基础上,通过Fluent有限元软件对传统螺旋形流道和新型昆虫翅脉仿生流道冷却结构进行流固耦合仿真对比分析,结果显示后者比前者具有更好的散热效果和流动特性:在相同边界条件下,冷却液最大流速约为1.839 m/s,出入口压降为3 181 Pa,加热面最高温度降低了约17.8%、最低温度降低了约4.6%,且冷却结构的温度场分布更均匀。研究结果可为数控机床主轴系统冷却结构的热设计提供参考。  相似文献   

13.
In this paper two-dimensional steady state compressible, turbulent boundary layer equations along with the core are solved for a channel of rectangular cross-section. The behaviour of core velocity, core temperature, pressure profile, friction coefficient and heat flow for different mass flow rates and inlet pressures are analysed for combustion gases. The results are compared with experimental results obtained onzinc (zero induction channel) during the commissioning of themhd plant at Tiruchirapalli. The results match the theoretical predictions quite well.  相似文献   

14.
微通道液冷板在高功率密度元器件散热上广泛使用,对板面温度均匀性提出了更加严格的要求.本文以提升液冷板板面温度均匀性为目的,设计了一个同侧单进口、出口的全铝材质的微通道液冷板,在热流密度为300 W的情况下,测试其使用单相水和相变工质冷却的板面温度最大温差分别为2℃以内和2.6℃(R236fa).为了进一步提升温度均匀性...  相似文献   

15.
根据进风口在墙壁上开口位置的不同,建筑开窗形式分为对墙开窗、临墙开窗、单侧墙开窗.运用airpak软件针对建筑进风口形式为临墙开窗形式下的单热源室内热压通风进行了模拟研究.通过改变进出风口中心高度差及进出风口面积比来分析中和面高度、有效热量系数、通风量、速度场及温度场的变化.结果 展示了临墙开窗形式在上述两种情况下对应...  相似文献   

16.
The paramagnetic property of oxygen makes it possible to control the two-phase flow at cryogenic temperatures by non-uniform magnetic fields. The free-surface flow of vapor-liquid oxygen in a rectangular channel was numerically studied using the two-dimensional phase field method. The effects of magnetic flux density and inlet velocity on the interface deformation, flow pattern and pressure drop were systematically revealed. The liquid level near the high-magnetic channel center was lifted upward by the inhomogeneous magnetic field. The interface height difference increased almost linearly with the magnetic force. For all inlet velocities, pressure drop under 0.25 T was reduced by 7–9% due to the expanded local cross-sectional area, compared to that without magnetic field. This work demonstrates the effectiveness of employing non-uniform magnetic field to control the free-surface flow of liquid oxygen. This non-contact method may be used for promoting the interface renewal, reducing the flow resistance, and improving the flow uniformity in the cryogenic distillation column, which may provide a potential for enhancing the operating efficiency of cryogenic air separation.  相似文献   

17.
《Advanced Powder Technology》2021,32(12):4546-4561
The inlet design of hydrocyclones determines the flow field symmetry and facilitates the formation of vortices. In this study, an integrated multichannel inlet based on the Archimedes spiral is developed to improve particle classification by combining the advantages of existing designs. Hydrocyclones with conventional tangent or novel spiral inlets are comparably studied to evaluate the feasibility and superiority of this design using the validated volume of fraction model and two-fluid model. Numerical results show that this novel spiral inlet dramatically improves the flow field symmetry in terms of radial velocity and air core as well as reduces the short-circuit flow and circulation flow. In addition, it also provides strong diversion and pre-separation effects on particles. Consequently, this novel spiral inlet provides superior classification performance than the conventional design, appearing in smaller cut-size, higher cut sharpness, and higher capacity. Such advantages become less evident with increasing channel number, due to the increased turbulence intensity caused by the additional feed streams. The spiral inlet with two channels can largely resemble the design with two tangential inlets in all indices, which makes it the most suitable in this study. This design method can be easily extended to other types of hydrocyclones.  相似文献   

18.
Dilip K. Maiti 《Acta Mechanica》2011,222(3-4):273-286
Numerically simulated results are presented for a family of rectangular cylinders with aspect ratios r 1 (=b/a with height a and width b) ranging from 0.1 to 1.0 (square cylinder) to gain a better insight into the dependency of the aerodynamic characteristics on the operational dimensionless parameters, namely Reynolds number Re and aspect ratio r 1. This work describes the flow from a long cylinder of rectangular cross-section placed parallel to a wall and subjected to a uniform shear flow. The flow is investigated in the laminar Reynolds number range (based on the incident stream at the cylinder upstream face and the height of the cylinder) at cylinder to wall gap height 0.5 times the cylinder height. The governing unsteady Navier?CStokes equations are solved numerically through a finite volume method on a staggered grid system using QUICK scheme for convective terms. The resulting equations are then solved by an implicit, time-marching, pressure correction-based SIMPLE algorithm for Reynolds number up to 1,000. The critical Reynolds numbers at which vortex shedding from the cylinder is started are specified for both the cases: far from the wall and near to the wall. It is reported that the vortex shedding from the rectangular cylinder of lower aspect ratio r 1 (???0.25) becomes regular and insensitive to the Reynolds number, while the aerodynamic characteristics of the rectangular cylinders with higher aspect ratio r 1 (???0.5) are strongly dependent on the Reynolds number.  相似文献   

19.
In this work, the fluid flow and mass transfer due to the presence of an electric field in a rectangular channel is examined. We consider a mixture of water or another neutral solvent and a salt compound, such as sodium chloride, for which the ionic species are entirely dissociated. Results are produced for the case in which the channel height is much greater than the electric double layer (EDL) (microchannel) and for the case in which the channel height is of the order of the width of the EDL (nanochannel). Both symmetric and nonsymmetric velocity, potential, and mole fraction distributions are considered, unlike previous work on this problem. At small electrolyte concentrations, the Debeye-Huckel picture of the electric double layer is recovered; at larger concentrations, the Gouy-Chapman picture of the electric double emerges naturally. The numerical results presented here agree with analytical solutions of a singular perturbation analysis, which is valid as the channel height increases. In the symmetric case for the electroosmotic flow so induced, the velocity field and the potential are similar. In the asymmetric case corresponding to different wall potentials, the velocity and potential can be vastly different. The fluid is assumed to behave as a continuum, and the volume flow rate is observed to vary linearly with channel height for electrically driven flow, in contrast to pressure-driven flow, which varies as height cubed. This means that very large pressure drops are required to drive flows in small channels. However, useful volume flow rates may be obtained at a very low driving voltage.  相似文献   

20.
近年来,随着半导体工业的迅速发展,芯片特征尺寸逐渐减小逐渐接近极限,为此提出三维集成电路(3D-ICs),集成度显著提高,但同时也造成芯片功率密度成倍增加,层间微通道液体冷却因其结构紧凑、传热效果较好、压降低等优点成为备受关注的焦点。本文采用仿真工具3D-ICE建立带有层间微通道液体冷却的不同通道类型的3D-ICs模型,模拟分析层间通道的物性参数如通道壁厚/针肋直径、通道高度、制冷剂流速/达西速度对三维芯片温度分布的影响情况。结果表明,给定条件下,热点温度随通道壁厚/针肋直径的增加而减少,在50~100变化快,温降最高可达1.309℃,随后趋于稳定;热点温度随通道高度变化的变化因通道类型而异,矩形直通道Tmax在0~1间迅速降低,随后逐渐升高,线性微针肋Tmax在一定范围内较矩形直通道平缓下降,随后缓慢升高或趋于平稳;热点温度随制冷剂流速/达西速度的增加而降低,且变化逐渐平缓。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号