首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LTX-315 is a clinical-stage, anticancer peptide therapeutic that disrupts cancer cell membranes. Existing mechanistic knowledge about LTX-315 has been obtained from cell-based biological assays, and there is an outstanding need to directly characterize the corresponding membrane-peptide interactions from a biophysical perspective. Herein, we investigated the membrane-disruptive properties of the LTX-315 peptide using three cell-membrane-mimicking membrane platforms on solid supports, namely the supported lipid bilayer, intact vesicle adlayer, and tethered lipid bilayer, in combination with quartz crystal microbalance-dissipation (QCM-D) and electrochemical impedance spectroscopy (EIS) measurements. The results showed that the cationic LTX-315 peptide selectively disrupted negatively charged phospholipid membranes to a greater extent than zwitterionic or positively charged phospholipid membranes, whereby electrostatic interactions were the main factor to influence peptide attachment and membrane curvature was a secondary factor. Of note, the EIS measurements showed that the LTX-315 peptide extensively and irreversibly permeabilized negatively charged, tethered lipid bilayers that contained high phosphatidylserine lipid levels representative of the outer leaflet of cancer cell membranes, while circular dichroism (CD) spectroscopy experiments indicated that the LTX-315 peptide was structureless and the corresponding membrane-disruptive interactions did not involve peptide conformational changes. Dynamic light scattering (DLS) measurements further verified that the LTX-315 peptide selectively caused irreversible disruption of negatively charged lipid vesicles. Together, our findings demonstrate that the LTX-315 peptide preferentially disrupts negatively charged phospholipid membranes in an irreversible manner, which reinforces its potential as an emerging cancer immunotherapy and offers a biophysical framework to guide future peptide engineering efforts.  相似文献   

2.
Agelaia-MPI and protonectin are antimicrobial peptides isolated from the wasp Parachartergus fraternus that show antimicrobial and neuroactive activities. Previously, two analogues of these peptides, neuroVAL and protonectin-F, were designed to reduce nonspecific toxicity and improve potency. Here, the three-dimensional structures of neuroVAL, protonectin and protonectin-F were determined by using circular dichroism and NMR spectroscopy. Antibacterial, antifungal, cytotoxic and hemolytic activities were tested for the parent peptides and analogues. All peptides showed moderate antimicrobial activity against Gram-positive bacteria, with agelaia-MPI being the most active. Protonectin and protonectin-F were found to be toxic to cancerous and noncancerous cell lines. Internalization experiments revealed that these peptides accumulate inside both cell types. By contrast, neuroVAL was nontoxic to all tested cells and was able to enter cells without accumulating. In summary, neuroVAL has potential as a nontoxic cell-penetrating peptide, while protonectin-F needs further modification to realize its potential as an antitumor peptide.  相似文献   

3.
Recently, anticancer peptides (ACPs) have emerged as unique and promising therapeutic agents for cancer treatment compared with antibody and small molecule drugs. In addition to experimental methods of ACPs discovery, it is also necessary to develop accurate machine learning models for ACP prediction. In this study, features were extracted from the three-dimensional (3D) structure of peptides to develop the model, compared to most of the previous computational models, which are based on sequence information. In order to develop ACPs with more potency, more selectivity and less toxicity, the model for predicting ACPs, hemolytic peptides and toxic peptides were established by peptides 3D structure separately. Multiple datasets were collected according to whether the peptide sequence was chemically modified. After feature extraction and screening, diverse algorithms were used to build the model. Twelve models with excellent performance (Acc > 90%) in the ACPs mixed datasets were used to form a hybrid model to predict the candidate ACPs, and then the optimal model of hemolytic peptides (Acc = 73.68%) and toxic peptides (Acc = 85.5%) was used for safety prediction. Novel ACPs were found by using those models, and five peptides were randomly selected to determine their anticancer activity and toxic side effects in vitro experiments.  相似文献   

4.
Current cancer treatments damage healthy cells and tissues, causing short-term and long-term side effects. New treatments are desired that show greater selectivity toward cancer cells and evade the common mechanisms of multidrug resistance. Membranolytic anticancer peptides (mACPs) hold promise against cancer and multidrug resistance. Amphipathicity, hydrophobicity, and net charge of mACPs participate in their respective interactions with cell membranes and their overall inhibition of cancer cells. To support the design of cell-line selective mACPs, we investigated the relationships that amino acid composition, physicochemical properties, sequence motifs, and sequence homology could have with their potency and selectivity towards several healthy and cancer cell lines. Sequence length and net charge are known to affect the selectivity of mACPs between cancer and healthy cell lines. Our study reveals that increasing the net charge or flexibility (i. e., small and aliphatic residues) influences their selectivity between cancer cell lines with comparable lipid compositions.  相似文献   

5.
Cationic antimicrobial peptides have attracted interest, both as antimicrobial agents and for their ability to increase cell permeability to potentiate other antibiotics. However, toxicity to mammalian cells and complexity have hindered development for clinical use. We present the design and synthesis of very short cationic peptides (3–9 residues) with potential dual bacterial membrane permeation and efflux pump inhibition functionality. Peptides were designed based upon in silico similarity to known active peptides and efflux pump inhibitors. A number of these peptides potentiate the activity of the antibiotic novobiocin against susceptible Escherichia coli and restore antibiotic activity against a multi-drug resistant E. coli strain, despite having minimal or no intrinsic antimicrobial activity. Molecular modelling studies, via docking studies and short molecular dynamics simulations, indicate two potential mechanisms of potentiating activity; increasing antibiotic cell permeation via complexation with novobiocin to enable self-promoted uptake, and binding the E. coli RND efflux pump. These peptides demonstrate potential for restoring the activity of hydrophobic drugs.  相似文献   

6.
We present a molecular dynamics simulation study of two peptides containing α‐ and β‐amino acid residues. According to experiment, the two peptides differ in the dominant fold when solvated in methanol: one shows a helical fold, the other a β hairpin. The simulations at 300 and 340 K were done by starting from a NMR spectroscopic model structure and from an extended (denatured) structure. The typical structural features of the two peptides are reproduced and a folding/unfolding equilibrium is observed on the nanosecond timescale at 300 K. Analysis of proton–proton NOE distance bounds and backbone 3J coupling constants gives results consistent with the experimental data. We conclude that our simulations are complementary to the experiments by providing detailed information on the conformational distributions.  相似文献   

7.
Esophageal cancer is an aggressive lethal malignancy causing thousands of deaths every year. While current treatments have poor outcomes, cecropinXJ (CXJ) is one of the very few peptides with demonstrated in vivo activity. The great interest in CXJ stems from its low toxicity and additional activity against most ESKAPE bacteria and fungi. Here, we present the first study of its mechanism of action based on molecular dynamics (MD) simulations and sequence-property alignment. Although unstructured in solution, predictions highlight the presence of two helices separated by a flexible hinge containing P24 and stabilized by the interaction of W2 with target biomembranes: an amphipathic helix-I and a poorly structured helix-II. Both MD and sequence-property alignment point to the important role of helix I in both the activity and the interaction with biomembranes. MD reveals that CXJ interacts mainly with phosphatidylserine (PS) but also with phosphatidylethanolamine (PE) headgroups, both found in the outer leaflet of cancer cells, while salt bridges with phosphate moieties are prevalent in bacterial biomimetic membranes composed of PE, phosphatidylglycerol (PG) and cardiolipin (CL). The antibacterial activity of CXJ might also explain its interaction with mitochondria, whose phospholipid composition recalls that of bacteria and its capability to induce apoptosis in cancer cells.  相似文献   

8.
Temporins are a family of antimicrobial peptides (AMPs) isolated from frog skin, which are very short, weakly charged, and highly hydrophobic. They execute bactericidal activities in different ways from many other AMPs. This work investigated morphological changes of planar bilayer membranes composed of mixed zwitterionic and anionic phospholipids induced by temporin B and L (TB and TL) using all-atom and coarse-grained molecular dynamics simulations. We found that TB and TL fold to α-helices at the membrane surface and penetrate shallowly into the bilayer. These short AMPs have low propensity to induce membrane pore formation but possess high ability to extract lipids out. At relatively high peptide concentrations, the strong hydrophobicity of TB and TL promotes them to aggregate into clusters on the membrane surface. These aggregates attract a large amount of lipids out of the membrane to release compression induced by other dispersed peptides binding to the membrane. The extruded lipids mix evenly with the peptides in the cluster and form tubule-like protrusions. Certain water molecules follow the movement of lipids, which not only fill the cavities of the protrusion but also assist in maintaining the tubular structures. In contrast, the peptide-free leaflet remains intact. The present results unravel distinctive antimicrobial mechanisms of temporins disturbing membranes.  相似文献   

9.
The phosphoenolpyruvate-dependent phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. The first proteins in the cascade are common to all organisms (EI and HPr). The active site of HPr involves a histidine (His15) located immediately before the beginning of the first α-helix. The regulator of sigma D (Rsd) protein also binds to HPr. The region of HPr comprising residues Gly9-Ala30 (HPr9–30), involving the first α-helix (Ala16-Thr27) and the preceding active site loop, binds to both the N-terminal region of EI and intact Rsd. HPr9–30 is mainly disordered. We attempted to improve the affinity of HPr9–30 to both proteins by mutating its sequence to increase its helicity. We designed peptides that led to a marginally larger population in solution of the helical structure of HPr9–30. Molecular simulations also suggested a modest increment in the helical population of mutants, when compared to the wild-type. The mutants, however, were bound with a less favorable affinity than the wild-type to both the N-terminal of EI (EIN) or Rsd, as tested by isothermal titration calorimetry and fluorescence. Furthermore, mutants showed lower antibacterial properties against Staphylococcus aureus than the wild-type peptide. Therefore, we concluded that in HPr, a compromise between binding to its partners and residual structure at the active site must exist to carry out its function.  相似文献   

10.
Many peptides interact with biological membranes, but elucidating these interactions is challenging because cellular membranes are complex and peptides are structurally flexible. To contribute to understanding how the membrane-active peptides behave near the membranes, we investigated peptide structural changes in different lipid surroundings. We focused on two antimicrobial peptides, anoplin and W-MreB1–9, and one cell-penetrating peptide, (KFF)3K. Firstly, by using circular dichroism spectroscopy, we determined the secondary structures of these peptides when interacting with micelles, liposomes, E. coli lipopolysaccharides, and live E. coli bacteria. The peptides were disordered in the buffer, but anoplin and W-MreB1–9 displayed lipid-induced helicity. Yet, structural changes of the peptide depended on the composition and concentration of the membranes. Secondly, we quantified the destructive activity of peptides against liposomes by monitoring the release of a fluorescent dye (calcein) from the liposomes treated with peptides. We observed that only for anoplin and W-MreB1–9 calcein leakage from liposomes depended on the peptide concentration. Thirdly, bacterial growth inhibition assays showed that peptide conformational changes, evoked by the lipid environments, do not directly correlate with the antimicrobial activity of the peptides. However, understanding the relation between peptide structural properties, mechanisms of membrane disruption, and their biological activities can guide the design of membrane-active peptides.  相似文献   

11.
Peptaibols, by disturbing the permeability of phospholipid membranes, can overcome anticancer drug resistance, but their natural hydrophobicity hampers their administration. By a green peptide synthesis protocol, we produced two water-soluble analogs of the peptaibol trichogin GA IV, termed K6-Lol and K6-NH2. To reduce production costs, we successfully explored the possibility of changing the naturally occurring 1,2-aminoalcohol leucinol to a C-terminal amide. Peptaibol activity was evaluated in ovarian cancer (OvCa) and Hodgkin lymphoma (HL) cell lines. Peptaibols exerted comparable cytotoxic effects in cancer cell lines that were sensitive—and had acquired resistance—to cisplatin and doxorubicin, as well as in the extrinsic-drug-resistant OvCa 3-dimensional spheroids. Peptaibols, rapidly taken up by tumor cells, deeply penetrated and killed OvCa-spheroids. They led to cell membrane permeabilization and phosphatidylserine exposure and were taken up faster by cancer cells than normal cells. They were resistant to proteolysis and maintained a stable helical structure in the presence of cancer cells. In conclusion, these promising results strongly point out the need for further preclinical evaluation of our peptaibols as new anticancer agents.  相似文献   

12.
Turns are secondary‐structure elements that are omnipresent in natively folded polypeptide chains. A large variety of four‐residue β‐turns exist, which differ mainly in the backbone dihedral angle values of the two central residues i+1 and i+2. The βVI‐type turns are of particular biological interest because the i+2 residue is always a proline in the cis conformation and might thus serve as target of peptidyl prolyl cis/trans isomerases (PPIases). We have designed cyclic hexapeptides containing two proline residues that predominantly adopt the cis conformation in aqueous solution. NMR data and MD calculations indicated that the cyclic peptide sequences c‐(‐D Xaa‐Ser‐Pro‐D Xaa‐Lys‐Pro‐) result in highly symmetric backbone structures when both prolines are in the cis conformation and the D ‐amino acids are either alanine or phenylalanine residues. Replacement of the serine residue either by phosphoserine or by tyrosine compromises this symmetry, but further increases the cis conformation content of both prolines. As a result, we obtained a cyclic hexapeptide that exists almost exclusively as the cis‐Pro/cis‐Pro conformer but shows no cis/trans interconversion even in the presence of the PPIase Pin1, apparently due to an energetically quite favorable but highly restricted conformational space.  相似文献   

13.
Forty samples of optically active falcarindiol analogues are synthesized by using the easily available C2 symmetric (R)- and (S)-1,1’-binaphth-2-ol (BINOL) in combination with Ti(OiPr)4, Zn powder and EtI. Their anticancer activities on Hccc-9810, HepG2, MDA-MB-231, Hela, MG-63 and H460 cells are assayed to elucidate their structure-activity relationships. These results showed that the falcarindiol analogue (3R,8S)- 2 i with the terminal double bond has the most potent anti-proliferation effect on Hccc-9810 cells with IC50 value of 0.46 μM. The falcarindiol analogue (3R,8S)- 2 i can induce obvious Hccc-9810 cell apoptosis in a concentration-dependent manner by Hoechst staining and flow cytometry analysis. The proposed mechanism suggests that the falcarindiol analogue (3R,8S)- 2 i increases LDH release and MDA content, and reduces the levels of SOD activity, which lead to the accumulation of oxidative stress and induce apoptosis in Hccc-9810 cells.  相似文献   

14.
We report here the synthesis and the conformation analysis by 1H NMR spectroscopy and computer simulations of six potent sweet molecules, N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-S-tert-butyl-L-cysteine 1-methylester (1; 70 000 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-beta-cyclohexyl-L-alanine 1-methylester (2; 50 000 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-4-cyan-L-phenylalanine 1-methylester (3; 2 000 times more potent than sucrose), N-[3,3-dimethylbutyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (4; 5500 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)propyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (5; 15 000 times more potent than sucrose), and N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (6; 15 000 times more potent than sucrose). The "L-shaped" structure, which we believe to be responsible for sweet taste, is accessible to all six molecules in solution. This structure is characterized by a zwitterionic ring formed by the AH- and B-containing moieties located along the +y axis and by the hydrophobic group X pointing into the +x axis. Extended conformations with the AH- and B-containing moieties along the +y axis and the hydrophobic group X pointing into the -y axis were observed for all six sweeteners. For compound 5, the crystal-state conformation was also determined by an X-ray diffraction study. The result indicates that compound 5 adopts an L-shaped structure even in the crystalline state. The extraordinary potency of the N-arylalkylated or N-alkylated compounds 1-6, as compared with that of the unsubstituted aspartame-based sweet taste ligands, can be explained by the effect of a second hydrophobic binding domain in addition to interactions arising from the L-shaped structure. In our examination of the unexplored D zone of the Tinti-Nofre model, we discovered a sweet-potency-enhancing effect of arylalkyl substitution on dipeptide ligands, which reveals the importance of hydrophobic (aromatic)-hydrophobic (aromatic) interactions in maintaining high potency.  相似文献   

15.
The conformational features of human melanin-concentrating hormone (hMCH) [Asp1-Phe2-Asp3-Met4-Leu5-Arg6-cyclo(S[bond]S)(Cys7-Met8-Leu9-Gly10-Arg11-Val12-Tyr13-Arg14-Pro15-Cys16)-Trp17-Gln18-Val19], in water and in a CD(3)CN/H(2)O (1:1 v/v) mixture at 298 K, have been determined by NMR spectroscopy followed by simulated annealing and molecular dynamics analyses to identify conformer populations. Backbone clustering analysis of NMR-spectroscopy-derived structures in the 7-16 peptide region led to the identification of a single representative structure in each solvent. Both root mean square deviation clustering and secondary structure analysis of the final conformers in both solvents show substantial convergence of most conformers into a single fold in the 4-17 region, with a limited variability around Gly10 and Tyr13 on going from CD(3)CN/H(2)O to pure water. The main feature deduced from the analysis of secondary structures is the occurrence of an N-terminal alpha helix of variable length, which spans an overall residue range of 2-9. A comparative analysis in the two solvents highlights that these structures are substantially different from that reported in the literature for the cyclic MCH(5-14) subunit of salmon MCH, which was used to perform a molecular characterization of the MCH/receptor complex. Our conformational data call for a critical revision of the proposed MCH/receptor complex model.  相似文献   

16.
Even in a natural ecosystem, plants are continuously threatened by various microbial diseases. To save themselves from these diverse infections, plants build a robust, multilayered immune system through their natural chemical compounds. Among the several crucial bioactive compounds possessed by plants’ immune systems, antimicrobial peptides (AMPs) rank in the first tier. These AMPs are environmentally friendly, anti-pathogenic, and do not bring harm to humans. Antimicrobial peptides can be isolated in several ways, but recombinant protein production has become increasingly popular in recent years, with the Escherichia coli expression system being the most widely used. However, the efficacy of this expression system is compromised due to the difficulty of removing endotoxin from its system. Therefore, this review suggests a high-throughput cDNA library-based plant-derived AMP isolation technique using the Bacillus subtilis expression system. This method can be performed for large-scale screening of plant sources to classify unique or homologous AMPs for the agronomic and applied field of plant studies. Furthermore, this review also focuses on the efficacy of plant AMPs, which are dependent on their numerous modes of action and exceptional structural stability to function against a wide range of invaders. To conclude, the findings from this study will be useful in investigating how novel AMPs are distributed among plants and provide detailed guidelines for an effective screening strategy of AMPs.  相似文献   

17.
Unlike the α-helical and β-sheet antimicrobial peptides (AMPs), our knowledge on amino acid-rich AMPs is limited. This article conducts a systematic study of rich AMPs (>25%) from different life kingdoms based on the Antimicrobial Peptide Database (APD) using the program R. Of 3425 peptides, 724 rich AMPs were identified. Rich AMPs are more common in animals and bacteria than in plants. In different animal classes, a unique set of rich AMPs is deployed. While histidine, proline, and arginine-rich AMPs are abundant in mammals, alanine, glycine, and leucine-rich AMPs are common in amphibians. Ten amino acids (Ala, Cys, Gly, His, Ile, Lys, Leu, Pro, Arg, and Val) are frequently observed in rich AMPs, seven (Asp, Glu, Phe, Ser, Thr, Trp, and Tyr) are occasionally observed, and three (Met, Asn, and Gln) were not yet found. Leucine is much more frequent in forming rich AMPs than either valine or isoleucine. To date, no natural AMPs are simultaneously rich in leucine and lysine, while proline, tryptophan, and cysteine-rich peptides can simultaneously be rich in arginine. These findings can be utilized to guide peptide design. Since multiple candidates are potent against antibiotic-resistant bacteria, rich AMPs stand out as promising future antibiotics.  相似文献   

18.
A group of seven peptides from spider venom with diverse sequences constitute the latarcin family. They have been described as membrane-active antibiotics, but their lipid interactions have not yet been addressed. Using circular dichroism and solid-state 15N-NMR, we systematically characterized and compared the conformation and helix alignment of all seven peptides in their membrane-bound state. These structural results could be correlated with activity assays (antimicrobial, hemolysis, fluorescence vesicle leakage). Functional synergy was not observed amongst any of the latarcins. In the presence of lipids, all peptides fold into amphiphilic α-helices as expected, the helices being either surface-bound or tilted in the bilayer. The most tilted peptide, Ltc2a, possesses a novel kind of amphiphilic profile with a coiled-coil-like hydrophobic strip and is the most aggressive of all. It indiscriminately permeabilizes natural membranes (antimicrobial, hemolysis) as well as artificial lipid bilayers through the segregation of anionic lipids and possibly enhanced motional averaging. Ltc1, Ltc3a, Ltc4a, and Ltc5a are efficient and selective in killing bacteria but without causing significant bilayer disturbance. They act rather slowly or may even translocate towards intracellular targets, suggesting more subtle lipid interactions. Ltc6a and Ltc7, finally, do not show much antimicrobial action but can nonetheless perturb model bilayers.  相似文献   

19.
The increase in resistant bacterial strains necessitates the identification of new antimicrobial molecules. Antimicrobial peptides (AMPs) are an attractive option because of evidence that bacteria cannot easily develop resistance to AMPs. The peptaibols, a class of naturally occurring AMPs, have shown particular promise as antimicrobial drugs, but their development has been hindered by their mechanism of action not being clearly understood. To explore how peptaibols might interact with membranes, circular dichroism, vibrational circular dichroism, linear dichroism, Raman spectroscopy, Raman optical activity, neutron reflectivity and molecular dynamics simulations have been used to study a small library of peptaibol mimics, the Aib-rich peptides. All the peptides studied quickly partitioned and oriented in membranes, and we found evidence of chiral interactions between the phospholipids and membrane-embedded peptides. The protocols presented in this paper open new ground by showing how chiro-optical spectroscopies can throw light on the mechanism of action of AMPs.  相似文献   

20.
Human α-defensin 5 (HD5) is a host-defense peptide exhibiting broad-spectrum antimicrobial activity. The lipopolysaccharide (LPS) layer on the Gram-negative bacterial membrane acts as a barrier to HD5 insertion. Therefore, the pore formation and binding mechanism remain unclear. Here, the binding mechanisms at five positions along the bacterial membrane axis were investigated using Molecular Dynamics. (MD) simulations. We found that HD5 initially placed at positions 1 to 3 moved up to the surface, while HD5 positioned at 4 and 5 remained within the membrane interacting with the middle and inner leaflet of the membrane, respectively. The arginines were key components for tighter binding with 3-deoxy-d-manno-octulosonic acid (KDO), phosphates of the outer and inner leaflets. KDO appeared to retard the HD5 penetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号