共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
Ramesh R. Yettella Brooke Henbest Andrew Proctor 《Journal of the American Oil Chemists' Society》2013,90(6):863-870
Photoirradiation has been used to synthesize 20 % conjugated linoleic acid (CLA) in soy oil with an iodine catalyst. CLA yields are affected by ultraviolet (UV) irradiation time, Magnesol® adsorbent treatment, iodine concentration and mixed tocopherols. However, these factors in combination had not been studied. Therefore, the objectives of this study were to determine the effect of (1) a combination of photoirradiation time, Magnesol® adsorbent treatment and added mixed soy tocopherols on CLA yields and the oxidative stability of CLA-rich soy oil, (2) UV light on mixed tocopherol stability, as tocopherols enhance CLA yields during photoirradiation. Soy oil was initially treated with 5 % Magnesol®. Iodine at 0 and 0.35 % was mixed with Magnesol®-treated soy oil and irradiated for 12 and 6 h. The irradiated oil was again treated with Magnesol®, mixed with 0, 0.35 or 0.175 % iodine; 1400 MT and irradiated for 12 or 6 more hours. CLA content in soy oil was determined by conventional gas chromatography-flame ionization detector. The oxidative stability of the oil was determined by measuring peroxide value (PV). The tocopherols stability was determined by high performance liquid chromatography. The results showed that increasing photoirradiation time increased CLA yields and lowered PV. Magnesol® adsorption produced highest CLA yield for all treatments by removing peroxides in RBD soy oil. The γ-tocopherols exhibited highest stability during UV irradiation. The order of tocopherol degradation was α-tocopherol > δ-tocopherol > γ-tocopherols. 相似文献
8.
The aim of the present study was to investigate the effect of sandalwood seed oil on fatty acid (FA) profiles and inflammatory factors in rats. Fifty male Sprague–Dawley rats were randomly divided into five different dietary groups: 10 % soybean oil (SO), 10 % olive oil (OO), 10 % safflower oil (SFO), 10 % linseed oil (LSO) and 8 % sandalwood seed oil blended with 2 % SO (SWSO) for 8 weeks. The SWSO group had a higher total n-3 polyunsaturated fatty acids (PUFA) levels but lower n-6:n-3 PUFA ratios in both adipose tissue and liver than those in the SO, OO and SFO groups (p < 0.05). Although the SWSO group had a much lower 18:3n-3 level (4.51 %) in their dietary lipids than the LSO group (58.88 %), the levels of docosahexaenoic acid (DHA: 22:6n-3) in liver lipids and phospholipids of the SWSO group (7.52 and 11.77 %) were comparable to those of the LSO group (7.07 and 13.16 %). Ximenynic acid, a predominant acetylenic FA in sandalwood seed oil, was found to be highly incorporated into adipose tissue (13.73 %), but relatively lower in liver (0.51 %) in the SWSO group. The levels of prostaglandin F2α, prostaglandin E2, thromboxane B2, leukotriene B4, tumor necrosis factor-α and interleukin-1β in both liver and plasma were positively correlated with the n-6:n-3 ratios, suggesting that increased n-6 PUFA appear to increase the formation of pro-inflammatory cytokines, whereas n-3 PUFA exhibit anti-inflammatory activity. The present results suggest that sandalwood seed oil could increase tissue levels of n-3 PUFA, DHA and reduce the n-6:n-3 ratio, and may increase the anti-inflammatory activity in rats. 相似文献
9.
Jayasimha Rayalu Daddam Harald M. Hammon Arnulf Trscher Laura Vogel Martina Gnott Gitit Kra Yishai Levin Helga Sauerwein Maya Zachut 《International journal of molecular sciences》2021,22(6)
Phosphoproteomics is a cutting-edge technique that can be utilized to explore adipose tissue (AT) metabolism by quantifying the repertoire of phospho-peptides (PP) in AT. Dairy cows were supplemented with conjugated linoleic acid (CLA, n = 5) or a control diet (CON, n = 5) from 63 d prepartum to 63 d postpartum; cows were slaughtered at 63 d postpartum and AT was collected. We performed a quantitative phosphoproteomics analysis of subcutaneous (SC) and omental (OM) AT using nanoUPLC-MS/MS and examined the effects of CLA supplementation on the change in the phosphoproteome. A total of 5919 PP were detected in AT, and the abundance of 854 (14.4%) were differential between CON and CLA AT (p ≤ 0.05 and fold change ± 1.5). The abundance of 470 PP (7.9%) differed between OM and SC AT, and the interaction treatment vs. AT depot was significant for 205 PP (3.5% of total PP). The integrated phosphoproteome demonstrated the up- and downregulation of PP from proteins related to lipolysis and lipogenesis, and phosphorylation events in multiple pathways, including the regulation of lipolysis in adipocytes, mTOR signaling, insulin signaling, AMPK signaling, and glycolysis. The differential regulation of phosphosite on a serine residue (S777) of fatty acid synthase (FASN) in AT of CLA-supplemented cows was related to lipogenesis and with more phosphorylation sites compared to acetyl-coenzyme A synthetase (ACSS2). Increased protein phosphorylation was seen in acetyl-CoA carboxylase 1 (ACACA;8 PP), FASN (9 PP), hormone sensitive lipase (LIPE;6 PP), perilipin (PLIN;3 PP), and diacylglycerol lipase alpha (DAGLA;1 PP) in CLA vs. CON AT. The relative gene expression in the SC and OM AT revealed an increase in LIPE and FASN in CLA compared to CON AT. In addition, the expression of DAGLA, which is a lipid metabolism enzyme related to the endocannabinoid system, was 1.6-fold higher in CLA vs. CON AT, and the expression of the cannabinoid receptor CNR1 was reduced in CLA vs. CON AT. Immunoblots of SC and OM AT showed an increased abundance of FASN and a lower abundance of CB1 in CLA vs. CON. This study presents a complete map of the SC and the OM AT phosphoproteome in dairy cows following CLA supplementation and discloses many unknown phosphorylation sites, suggestive of increased lipid turnover in AT, for further functional investigation. 相似文献
10.
Various components of Phoenix tree (Firmiana simplex) seed were determined. Oil, protein, moisture, ash, and fiber accounted for 27.8 ± 0.3, 19.7 ± 0.4, 7.5 ± 0.2, 4.4 ± 0.3, and 31.23 ± 0.93 % (w/w) of the seed, respectively. The acid value, peroxide value, saponification value, and unsaponifiable matter content of Phoenix tree seed oil extracted using the Soxhlet method were 3.73 ± 0.02 mg KOH/g, 1.97 ± 0.21 mmol/kg, 183.74 ± 2.37 mg KOH/g, and 0.90 ± 0.05 g/100 g, respectively. The total tocopherol content was 54.5 ± 0.5 mg/100 g oil, which consisted mainly of δ‐tocopherol (29.5 ± 0.6 mg/100 g oil) and γ‐tocopherol (13.8 ± 0.8 mg/100 g oil). Linoleic acid (L, 30.2 %), oleic acid (O, 22.2 %), and sterculic acid (S, 23.2 %) were the main unsaturated fatty acids of Phoenix tree seed oil. The saturated fatty acids included palmitic acid (17.4 %) and stearic acid (St, 2.9 %). The work shows the first report of sterculic acid in seeds of this species. This oil can be used as a raw material to produce sterculic acid. 相似文献
11.
12.
13.
14.
15.
16.
麻疯油制备生物柴油过程中固体酸催化剂的研究 总被引:4,自引:0,他引:4
利用高酸值麻疯油中游离脂肪酸与甲醇预酯化反应作为目标反应,通过对几类固体酸(Hβ、HM、SAPO-11、HZSM-5分子筛,D72、DOO5-Ⅱ阳离子交换树脂,ST-Ⅰ、SZ、ST-Ⅱ固体超强酸,TiO2、ZrO2氧化物)的筛选,得到了原料廉价、制备简单、酯化活性高的ST-Ⅱ系列固体酸。固体酸酸强度和酸量的测定表明:对于高酸值麻疯树油中游离脂肪酸与甲醇的预酯化反应,-12.70≤H0≤0.8范围的酸中心具有较好的催化活性。 相似文献
17.
18.
19.
20.
Nadia Raboanatahiry Yongtai Yin Kang Chen Jianjie He Longjiang Yu Maoteng Li 《International journal of molecular sciences》2021,22(19)
Fatty acid desaturases add a second bond into a single bond of carbon atoms in fatty acid chains, resulting in an unsaturated bond between the two carbons. They are classified into soluble and membrane-bound desaturases, according to their structure, subcellular location, and function. The orthologous genes in Camelina sativa were identified and analyzed, and a total of 62 desaturase genes were identified. It was revealed that they had the common fatty acid desaturase domain, which has evolved separately, and the proteins of the same family also originated from the same ancestry. A mix of conserved, gained, or lost intron structure was obvious. Besides, conserved histidine motifs were found in each family, and transmembrane domains were exclusively revealed in the membrane-bound desaturases. The expression profile analysis of C. sativa desaturases revealed an increase in young leaves, seeds, and flowers. C. sativa ω3-fatty acid desaturases CsaFAD7 and CsaDAF8 were cloned and the subcellular localization analysis showed their location in the chloroplast. They were transferred into Arabidopsis thaliana to obtain transgenic lines. It was revealed that the ω3-fatty acid desaturase could increase the C18:3 level at the expense of C18:2, but decreases in oil content and seed weight, and wrinkled phenotypes were observed in transgenic CsaFAD7 lines, while no significant change was observed in transgenic CsaFAD8 lines in comparison to the wild-type. These findings gave insights into the characteristics of desaturase genes, which could provide an excellent basis for further investigation for C. sativa improvement, and overexpression of ω3-fatty acid desaturases in seeds could be useful in genetic engineering strategies, which are aimed at modifying the fatty acid composition of seed oil. 相似文献