首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The programs associated with embryonic roots (ERs), primary roots (PRs), lateral roots (LRs), and adventitious roots (ARs) play crucial roles in the growth and development of roots in plants. The root functions are involved in diverse processes such as water and nutrient absorption and their utilization, the storage of photosynthetic products, and stress tolerance. Hormones and signaling pathways play regulatory roles during root development. Among these, auxin is the most important hormone regulating root development. The target of rapamycin (TOR) signaling pathway has also been shown to play a key role in root developmental programs. In this article, the milestones and influential progress of studying crosstalk between auxin and TOR during the development of ERs, PRs, LRs and ARs, as well as their functional implications in root morphogenesis, development, and architecture, are systematically summarized and discussed.  相似文献   

3.
Target of rapamycin (TOR) is a serine/threonine protein kinase that plays a central regulating role in cell proliferation, growth, and metabolism, but little is known about the TOR signaling pathway in Chlorella sorokiniana. In this study, a Chlorella sorokiniana DP-1 strain was isolated and identified, and its nutritional compositions were analyzed. Based on homologous sequence analysis, the conserved CsTOR protein was found in the genome of Chlorella sorokiniana. In addition, the key components of TOR complex 1 (TORC1) were present, but the components of TORC2 (RICTOR and SIN1) were absent in Chlorella sorokiniana. Pharmacological assays showed that Chlorella sorokiniana DP-1 was insensitive to rapamycin, Torin1 and KU0063794, whereas AZD8055 could significantly inhibit the growth of Chlorella sorokiniana. RNA-seq analysis showed that CsTOR regulated various metabolic processes and signal transduction pathways in AZD8055-treated Chlorella sorokiniana DP-1. Most genes involved in photosynthesis and carbon fixation in Chlorella sorokiniana DP-1 were significantly downregulated under CsTOR inhibition, indicating that CsTOR positively regulated the photosynthesis in Chlorella sorokiniana. Furthermore, CsTOR controlled protein synthesis and degradation by positively regulating ribosome synthesis and negatively regulating autophagy. These observations suggested that CsTOR plays an important role in photosynthesis and cellular metabolism, and provide new insights into the function of CsTOR in Chlorella sorokiniana.  相似文献   

4.
N-terminal acetylation (NTA) is an ancient protein modification conserved throughout all domains of life. N-terminally acetylated proteins are present in the cytosol, the nucleus, the plastids, mitochondria and the plasma membrane of plants. The frequency of NTA differs greatly between these subcellular compartments. While up to 80% of cytosolic and 20–30% of plastidic proteins are subject to NTA, NTA of mitochondrial proteins is rare. NTA alters key characteristics of proteins such as their three-dimensional structure, binding properties and lifetime. Since the majority of proteins is acetylated by five ribosome-bound N-terminal acetyltransferases (Nats) in yeast and humans, NTA was long perceived as an exclusively co-translational process in eukaryotes. The recent characterization of post-translationally acting plant Nats, which localize to the plasma membrane and the plastids, has challenged this view. Moreover, findings in humans, yeast, green algae and higher plants uncover differences in the cytosolic Nat machinery of photosynthetic and non-photosynthetic eukaryotes. These distinctive features of the plant Nat machinery might constitute adaptations to the sessile lifestyle of plants. This review sheds light on the unique role of plant N-acetyltransferases in development and stress responses as well as their evolution-driven adaptation to function in different cellular compartments.  相似文献   

5.
MicroRNAs (miRNAs) play crucial roles in plant development and stress responses, and a growing number of studies suggest that miRNAs are promising targets for crop improvement because they participate in the regulation of diverse, important agronomic traits. MicroRNA398 (miR398) is a conserved miRNA in plants and has been shown to control multiple stress responses and plant growth in a variety of species. There are many studies on the stress response and developmental regulation of miR398. To systematically understand its function, it is necessary to summarize the evolution and functional roles of miR398 and its target genes. In this review, we analyze the evolution of miR398 in plants and outline its involvement in abiotic and biotic stress responses, in growth and development and in model and non-model plants. We summarize recent functional analyses, highlighting the role of miR398 as a master regulator that coordinates growth and diverse responses to environmental factors. We also discuss the potential for fine-tuning miR398 to achieve the goal of simultaneously improving plant growth and stress tolerance.  相似文献   

6.
The chloroplast has a central position in oxygenic photosynthesis and primary metabolism. In addition to these functions, the chloroplast has recently emerged as a pivotal regulator of plant responses to abiotic and biotic stress conditions. Chloroplasts have their own independent genomes and gene-expression machinery and synthesize phytohormones and a diverse range of secondary metabolites, a significant portion of which contribute the plant response to adverse conditions. Furthermore, chloroplasts communicate with the nucleus through retrograde signaling, for instance, reactive oxygen signaling. All of the above facilitate the chloroplast’s exquisite flexibility in responding to environmental stresses. In this review, we summarize recent findings on the involvement of chloroplasts in plant regulatory responses to various abiotic and biotic stresses including heat, chilling, salinity, drought, high light environmental stress conditions, and pathogen invasions. This review will enrich the better understanding of interactions between chloroplast and environmental stresses, and will lay the foundation for genetically enhancing plant-stress acclimatization.  相似文献   

7.
Rice is an important food crop all over the world. It can be infected by the rice blast fungus Magnaporthe oryzae, which results in a significant reduction in rice yield. The infection mechanism of M. oryzae has been an academic focus for a long time. It has been found that G protein, AMPK, cAMP-PKA, and MPS1-MAPK pathways play different roles in the infection process. Recently, the function of TOR signaling in regulating cell growth and autophagy by receiving nutritional signals generated by plant pathogenic fungi has been demonstrated, but its regulatory mechanism in response to the nutritional signals remains unclear. In this study, a yeast amino acid permease homologue MoGap1 was identified and a knockout mutant of MoGap1 was successfully obtained. Through a phenotypic analysis, a stress analysis, autophagy flux detection, and a TOR activity analysis, we found that the deletion of MoGap1 led to a sporulation reduction as well as increased sensitivity to cell wall stress and carbon source stress in M. oryzae. The ΔMogap1 mutant showed high sensitivity to the TOR inhibitor rapamycin. A Western blot analysis further confirmed that the TOR activity significantly decreased, which improved the level of autophagy. The results suggested that MoGap1, as an upstream regulator of TOR signaling, regulated autophagy and responded to adversities such as cell wall stress by regulating the TOR activity.  相似文献   

8.
In eukaryotes, microRNAs (miRNAs) have roles in development, homeostasis, disease and the immune response. Recent work has shown that plant and mammalian miRNAs also mediate cross-kingdom and cross-domain communications. However, these studies remain controversial and are lacking critical mechanistic explanations. Bacteria do not produce miRNAs themselves, and therefore it is unclear how these eukaryotic RNA molecules could function in the bacterial recipient. In this review, we compare and contrast the biogenesis and functions of regulatory RNAs in eukaryotes and bacteria. As a result, we discovered several conserved features and homologous components in these distinct pathways. These findings enabled us to propose novel mechanisms to explain how eukaryotic miRNAs could function in bacteria. Further understanding in this area is necessary to validate the findings of existing studies and could facilitate the use of miRNAs as novel tools for the directed remodelling of the human microbiota.  相似文献   

9.
Mitogen-activated protein kinase (MAPK) cascades play crucial roles in almost all biological processes in plants. They transduce extracellular cues into cells, typically through linear and sequential phosphorylation and activation of members of the signaling cascades. However, accumulating data suggest various regulatory mechanisms of plant MAPK cascades in addition to the traditional phosphorylation pathway, in concert with their large numbers and coordinated roles in plant responses to complex ectocytic signals. Here, we highlight recent studies that describe the uncanonical mechanism of regulation of MAPK cascades, regarding the activation of each tier of the signaling cascades. More particularly, we discuss the unusual role for MAPK kinase kinases (MAPKKKs) in the regulation of MAPK cascades, as accumulating data suggest the non-MAPKKK function of many MAPKKKs. In addition, future work on the biochemical activation of MAPK members that needs attention will be discussed.  相似文献   

10.
11.
12.
13.
The Jun N-terminal kinase (JNK) pathway is an evolutionary conserved kinase cascade best known for its roles during stress-induced apoptosis and tumor progression. Recent findings, however, have identified new roles for this pleiotropic pathway in stem cells during regenerative responses and in cellular plasticity. Here, we provide an overview of recent findings about the new roles of JNK signaling in stem cell biology using two well-established Drosophila models: the testis and the intestine. We highlight the pathway’s roles in processes such as proliferation, death, self-renewal and reprogramming, and discuss the known parallels between flies and mammals.  相似文献   

14.
Exposure of plants to toxic concentrations of metals leads to disruption of the cellular redox status followed by an accumulation of reactive oxygen species (ROS). ROS, like hydrogen peroxide, can act as signaling molecules in the cell and induce signaling via mitogen-activated protein kinase (MAPK) cascades. MAPK cascades are evolutionary conserved signal transduction modules, able to convert extracellular signals to appropriate cellular responses. In this review, our current understanding about MAPK signaling in plant metal stress is discussed. However, this knowledge is scarce compared to research into the role of MAPK signaling in the case of other abiotic and biotic stresses. ROS production is a common response induced by different stresses and undiscovered analogies may exist with metal stress. Therefore, further attention is given to MAPK signaling in other biotic and abiotic stresses and its interplay with other signaling pathways to create a framework in which the involvement of MAPK signaling in metal stress may be studied.  相似文献   

15.
16.
促分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)是一类存在于各种真核生物体中的丝氨酸/苏氨酸型蛋白激酶。它与其它一些信号分子组成MAPK级联信号通路,接受外界刺激信号,将信号传入细胞内,影响特定基因的表达,从而在真核生物的生长、发育、分化和凋亡等多方面起着重要的作用。为进一步研究其机理,本文就其研究方法作一阐述。  相似文献   

17.
18.
我国农用转光膜的研究进展   总被引:15,自引:0,他引:15  
概述了近年来我国农用转光膜在光学设计及转光剂方面的研究进展,对转光剂的引入方法、转光膜的透光性、发射光谱与植物生长光合作用光谱的匹配性、转光膜的抗荧光衰减性等性能进行了讨论,并针对当前转光膜研究存在的问题提出了发展建议。  相似文献   

19.
20.
Protein phosphorylation is the most frequent post-translational modification (PTM) that plays important regulatory roles in a wide range of biological processes. Phosphorylation mainly occurs on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues, with the phosphorylated Tyr sites accounting for ~1–2% of all phosphorylated residues. Tyr phosphorylation was initially believed to be less common in plants compared to animals; however, recent investigation indicates otherwise. Although they lack typical protein Tyr kinases, plants possess many dual-specificity protein kinases that were implicated in diverse cellular processes by phosphorylating Ser, Thr, and Tyr residues. Analyses of sequenced plant genomes also identified protein Tyr phosphatases and dual-specificity protein phosphatases. Recent studies have revealed important regulatory roles of Tyr phosphorylation in many different aspects of plant growth and development and plant interactions with the environment. This short review summarizes studies that implicated the Tyr phosphorylation in biosynthesis and signaling of plant hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号