首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Ternary in‐situ poly(butylene terephthalate) (PBT)/poly(acrylonitrile‐butadienestyrene) (ABS)/liquid crystalline polymer(LCP) blends were prepared by injection molding. The LCP used was a versatile Vectra A950, and the matrix material was PBT/ABS 60/40 by weight. Maleic anhydride (MA) copolymer and solid epoxy resin (bisphenol type‐A) were used as compatibilizers for these blends. The tensile, dynamic mechanical, impact, morphology and thermal properties of the blends were studied. Tensile tests showed that the tensile stregth of PBT/ABS/LCP blend in the longitudinal direction increased markedly with increasing LCP content. However, it decreased sharply with increasing LCP content up to 5 wt%; thereafter it decreased slowly with increasing LCP content in the transverse direction. The modulus of this blend in the longitudinal direction appeared to increase considerably with increasing LCP content, whereas the incorporation of LCP into PBT/ABS blends had little effect on the modulus in the transverse direction. The impact tests revealed that the Izod impact strength of the blends in longitudinal direction decreased with increasing LCP content up to 10 wt%; thereafter it increased slowly with increasing LCP. Dynamic mechanical analyses (DMA) and thermogravimetric measurements showed that the heat resistance and heat stability of the blends tended to increase with increasing LCP content. SEM observation, DMA, and tensile measurement indicated that the additions of epoxy and MA copolymer to PBT/ABS matrix appeared to enhance the compatibility between PBT/ABS and LCP.  相似文献   

2.
The microstructures, mechanical properties, and fracture toughness of LCP (Vectra B950) reinforced PC/PBT blend with a 60/40 weight ratio have been studied. LCP of varying concentrations were investigated as rigid fillers in matrices of multiphase polymer blends. In this study, differences in microstructures and morphology between samples of two thicknesses (4 mm thick and 6 mm thick) and two geometries (dumbbell and rectangular) were compared using scanning electron microscopy (SEM). Given identical processing conditions, fibrous LCP structures were evident in the 4-mm-thick injection molded, dumbbell-shaped samples, whereas the 6-mm-thick rectangular samples displayed spherical dispersion of LCP aggregates that embrittled the preblended ductile matrix. Tensile properties of the dumbbell specimens showed superior strengthening and stiffening whereby the tensile strength increased twofold and the modulus increased fourfold. Plane strain fracture toughness was slightly enhanced as the LCP content increased because of the fiber strengthening effect but the overall fracture performance of the in situ composites was relatively poor compared with PC/PBT. Experimental results were compared with those predicted in composite theory. Simplified micromechanics equations were developed to describe the tensile moduli of injection molded LCP reinforced blends that exhibited a strong skin-core morphology.  相似文献   

3.
Polypropylene (PP) was melt blended with Vectra B‐950 [a thermotropic liquid crystalline polymer (LCP)], in a single screw extruder in presence of different doses of ethylene acrylic acid (EAA) copolymer, as modifier. The effect of incorporation in different proportions of EAA at a fixed dose of 5% LCP, on mechanical, thermal, morphological, and rheological properties of such blends was studied and the same were compared with that of pure PP and amongst themselves. Mechanical analysis (tensile properties) of the prepared blends exhibited improvements in ultimate tensile strength (UTS), modulus, toughness, hardness, and impact strength of PP matrix with the incorporation of EAA. The improvement in mechanical properties is associated with the formation of LCP fibrils as evidenced by scanning electron microscopy (SEM). A strong interaction through H‐bonding between the segments of Vectra B‐950 and EAA was established by FTIR study. Differential scanning calorimetry (DSC) studies indicated substantial increase in melting point of the blends, and thermogravimetric analysis (TGA) showed that the thermal stability of PP was improved with the addition of LCP and EAA. Rheological properties showed that LCP and EAA drop down the melt viscosity of PP and thus facilitate processibility of blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Blends of an amorphous polyamide (PA) and a liquid crystalline copolyesteramide (LCP), poly(naphthoate-aminophenoterephthalate) were prepared in a twin-screw extruder. Specimens for mechanical testing were prepared by injection molding. Morphological, thermal, mechanical, and rheological properties were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometry, capillary rheometry, and a tensile tester, respectively. The tensile mechanical behavior of the LCP/PA blends was found to be affected by their compositions and specimen thickness. Tensile testing revealed that the tensile mechanical behavior of the LCP/PA blends was very similar to that of polymeric composite and the tensile strength of the LCP/PA (50/50) blend was approximately two times of the value of PA homopolymer and exceeded that of pure LCP. The morphology of the LCP/PA blends was also found to be affected by their compositions. SEM studies revealed that the liquid crystalline polymer (LCP) formed finely dispersed spherical domains in the PA matrix and the inclusions were deformed into fibrils from the spherical droplets with increasing LCP content. It has been found that droplet and fiber formations lead to low and high strength material, respectively. In particular, at specific LCP content (50 wt%), the tensile strength of the LCP/PA blend exceeded that of pure LCP. The improvement in tensile properties is likely due to the reinforcement of the PA matrix by the fibrous LCP phase as observed by SEM. A distinct shell-core morphology was found to develop in the injection molded samples of these blends. This is believed to have a synergistic effect on the tensile properties of the LCP/PA blends. The rheological behavior of the LCP/PA blends was found to be very different from that of the parent polymers and significant viscosity reductions were observed for the LCP/PA (50/50) blend. Based upon DSC, these blends have shown to be incompatible in the entire range of concentrations.  相似文献   

5.
A liquid crystalline polymer (LCP), Vectra B950, reinforced polycarbonate (PC) 60 wt%/polybutylene terephthalate (PBT) 40 wt% blend was studied using the injection molding process. Morphology and mechanical properties of ternary in situ LCP composites were investigated and compared with binary polycarbonate/Vectra B950 LCP composites. Good in situ fibrillation of LCP was observed in the direct injection-molded LCP composites. Preliminary results of this work indicate that addition of PBT improves skin-core distribution of LCP microfibrils in the matrix and also enhances adhesion between the matrix and Vectra B950, which contains terephthalic acid. The PC/PBT/LCP ternary system also exhibits lower viscosity than the PC/PBT blend and pure LCP. In a ternary system with 30 wt% of Vectra B950, tensile modulus and strength increase approximately threefold and twofold, respectively. The rule of mixtures (ROM) for continuous reinforcement can accurately represent the strengthening effects for the ternary LCP in situ composites. Generally, LCP reduces the ductility and impact strength of the thermoplastic blends; however, the relative loss is less in the ternary system than in the binary system.  相似文献   

6.
Blends of poly(ethylene 2,6-naphthalate) (PEN) and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate), were prepared in a twin-screw extruder. Specimens for mechanical testing were prepared by injection molding. The morphology and mechanical properties were investigated by scanning electron microscopy (SEM) and an Instron tensile tester. SEM studies revealed that finely dispersed spherical domains of the liquid crystalline polymer (LCP) were formed in the PEN matrix, and the inclusions were deformed into fibrils from the spherical droplets with increasing LCP content. The morphology of the blends was found to be affected by their composition and a distinct skin-core morphology was found to develop in the injection molded samples of these blends. Mechanical properties were improved with increasing LCP content, and synergistic effects have been observed at 70 wt% LCP content whereas the elongation at break was found to be reduced drastically above 10 wt% of LCP content. This is a characteristic typical of chopped-fiber-filled composites. The improvement in mechanical properties is likely due to the reinforcement of the PEN matrix by the fibrous LCP phase as observed by scanning electron microscopy. The tensile and modulus mechanical behavior of the LCP/PEN blends was very similar to those of the polymeric composite, and the tensile strength and flexural modulus of the LCP/PEN 70/30 blend were two times the value of PEN homopolymer and exceeded those of pure LCP, suggesting LCP acts as a reinforcing agent in the blends.  相似文献   

7.
Poly(butylene adipate-co-terephthalate) (PBAT) is a soft biodegradable polymer with a low melting temperature. PBAT has been melt-blended with a liquid crystalline polymer (LCP) aiming at preparing a new biodegradable polymer blend with improved mechanical properties. The phase structure and crystalline morphologies of the PBAT/LCP blends were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). It was found that the LCP domains are precisely dispersed in the PBAT matrix and that these domains act as the nuclei for PBAT crystallization. The nonisothermal crystallization temperature from the melt was dramatically shifted from 50°C to about 95°C by the addition of 20% LCP. In addition, the tensile modulus of the prepared blends increases gradually with increasing LCP content, indicating the excellent strengthening effects of LCP on the PBAT matrix. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Summary Structure-property relationships of blends of a thermotropic polyester-type main-chain LCP and polybutylene terephthalate (PBT) were investigated. LCP was melt blended with three different PBTs and the blends were processed by injection moulding or extrusion. Mechanical and thermal properties of the blends were determined and the blend structure was characterized by scanning electron microscopy (SEM). LCP acted as mechanical reinforcement for PBT and improved also its dimensional and thermal stability. The stiffness of PBT increased with increasing LCP content, but at the same time the blends became more brittle. In extrusion the orientation of LCP phases could be further enhanced by additional drawing, which led to significant improvements in strength and stiffness at LCP contents of 20–30 wt.-%.  相似文献   

9.
Polypropylene (PP) and Vectra A950, a thermotropic liquid crystalline polymer (LCP), blends were prepared in a single‐screw extruder with the variation in Vectra A950 content in presence of fixed amount (2%, with respect to PP and LCP mixture as a whole) of ethylene‐acrylic acid (EAA) copolymer as a compatibilizer. Mechanical analysis of the compatibilized blends within the range of LCP incorporations under study (2–10%) indicated pronounced improvement in the moduli, ultimate tensile strength (UTS), and hardness. Fourier transform infrared (FTIR) spectroscopy studies revealed the presence of strong interaction through H‐bonding between the segments of Vectra A950 and the compatibilizer EAA. Morphological studies performed by scanning electron microscopy (SEM) manifested the development of fine fibrillar morphology in the compatibilized PP/Vectra A950 blends, which had large influence on the mechanical properties. Differential scanning calorimetry studies showed an initial drop of the melting point of PP in the presence of EAA followed by enhancement of the same in presence of Vectra A950. TGA showed an increase in the thermal stability for all blends with respect to matrix polymer PP. Rheological studies showed that a very small quantity of Vectra A 950 was capable of reducing the melt viscosity of PP particularly in the lower shear rate region and hence facilitated processibility of the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Polyethylene blends (LLDPE:HDPE ≈ 2:1 by wt) used in NASA's balloon film applications can be effectively reinforced by addition of a small amount of liquid crystalline polymer (LCP). Cast and blown PE films containing ≈ 10% LCP show an appreciable enhancement in tensile modulus ≈400% over that of the neat PE matrix. Anisotropy in these in-situ composites was reduced by controlling LCP molecular orientation via a counter-rotating (C/R) annular die. LCP/PE blend blown films with nearly isotropic properties are obtained. Based on microscopy studies, LCP domains were generally present as fibrils with diameters of ≈ 1 to 3 µM and lengths of ≈ 100 to 300 µM. Films, produced using a C/R die, had fibrillated LCP phases and variable orientation through the film thickness. This paper describes the influence of some key process variables including temperature profile, number of extrusion cycles, degree of mixing, adapter geometry, and die counter-rotation on LCP/PE blend film morphology and mechanical properties. The structure of LCP/PE blend blown films was also evaluated using scanning electron microscope (SEM) and wide angle X-ray scattering (WAXS) techniques.  相似文献   

11.
Thermotropic LCP/LCP fiber blends were prepared by a combination of meltblending and hot-drawing, using a wholly aromatic copolyester KU-9211 (also called K161 from Bayer A.G.) and an aliphatic containing LCP (liquid crystalline polymer) PET/PHB60 (from Kodak Tennessee Eastman). Morphological evidence, including scanning electron (SEM) and transmission electron microscopy (TEM), showed that the dispersed phase consisted primarily of highly oriented, 0.5 to 2 μm diameter rigid-rods of aromatic fibers imbedded in a matrix of predominantly aliphatic LCP fibrils with diameters in the range of 20 to 50 nm. An interphase of approximately 50 nm strongly bonded the two phases together. The fiber blends were characterized using dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), gas chromotography/mass spectroscopy (GC/MS), and rheological measurements. It appears that the processing conditions employed for melt blending had caused PET/PHB60 to undergo chain scission, thereby creating chemical interactions between the two LCP components during the melt blending process. Differential scanning calorimetry (DSC) thermograms as well as nuclear magnetic resonance (NMR) spectra of the extracted fraction from the mixture of 30 wt% K161/70 wt% PET(PHB60) confirmed the chemical interaction between the two thermotropic liquid crystalline polymers.  相似文献   

12.
Ternary in situ polycarbonate (PC)/polybutylene terephthalate (PBT)/liquid crystalline polymer (LCP) composites were prepared by injection molding. The liquid crystalline polymer used was a versatile Vectra A950. The matrix of composite was composed of PC/PBT 60/40 by weight. A solid epoxy resin (bisphenol type‐A) was used as a compatibilizer for the composites. Dynamic mechanical analysis (DMA) showed that epoxy resin was effective to improve the compatibility between PC and PBT, and between PC/PBT and LCP, respectively. Tensile tests revealed that the stiffness of composites shows little change with the LCP content up to 10 wt %. Above this concentration, the stiffness tended to increase with increasing LCP content. Furthermore, the tensile strengths appeared to increase with increasing LCP content, and their values were close to those predicted from the rule of mixtures. Scanning electron microscopic examination showed that LCP ribbons and short fibrils were developed in the composites containing LCP content ≤10 wt %. However, fine and elongated fibrils were formed in the skin and core sections of the composites when the LCP content reached 25 wt % and above. Thermogravimetric analysis indicated that the thermooxidative stability of the PC/PBT 60/40 blend tended to improve with increasing LCP content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1827–1835, 1999  相似文献   

13.
Abstract

The purpose of the present study was to investigate the fibrillisation process of liquid crystalline polymers (LCPs) in an amorphous poly(phenylene ether) (PPE) matrix during melt blending and a subsequent drawing operation, as well as to analyse the relationship between morphology and mechanical properties of the fibrillar reinforced LCP/PPE blends. In order to understand the effect of the compatibility between the blend partners, an additional set of LCP/PEE blends, containing different amounts of a compatibiliser, was studied too. The processing steps included: (i) melt extrusion and continuous hot stretching for fibrillisation of the LCP component in the different LCP/PPE blends, and (ii) compression (CM) or injection moulding (IM) of the drawn blends at temperatures below the melting temperature (Tm) of the LCPs. Samples from each processing stage were characterised by means of scanning electron microscopy (SEM), wide and small angle X-ray scattering (WAXS and SAXS), and mechanical testing. SEM and WAXS showed that the as extruded blends were isotropic, but after hot stretching the LCP components became highly oriented, with a high aspect ratio and a diameter of the fibrils between 0·4 and 3 μm. The fibrillated structure of the LCPs in the blends could be preserved after the compression and injection moulding only at temperatures below Tm of the LCPs. Addition of a compatibiliser to the LCP/PPE blend did not remarkably improve the adhesion between the components, as a result of the large difference between the coefficients of thermal expansion of the blend partners, which leads to different shrinkage conditions of the LCP fibrils and the PPE matrix. The flexural modulus (E) of all IM blends increased stepwise with an increase in the weight (wt) fraction of the LCP. At the same time, the highest values for the flexural strength (σ) were obtained for the LCP/PPE blends containing 5 wt-% LCP.  相似文献   

14.
Maleic anhydride compatibilized blends of isotactic polypropylene (PP) and thermotropic liquid crystaline polymer (LCP) were prepared either by the direct injection molding (one-step process), or by twin-screw extrusion blending, after which specimens were injection molded (two-step process). The morphology and mechanical properties of these injection molded in situ LCP composites were studied by means of scanning electron microscopy (SEM), Izod impact testing, static tensile, and dynamic mechanical measurements. SEM observations showed that fine and elongated LCP fibrils are formed in the maleic anhydride compatibilized in situ composites fabricated by means of the one-step process. The tensile strength and modulus of these composites were considerably close to those predicted from the rule of mixtures. Furthermore, the impact behavior of LCP fibril reinforced composites was similar to that of the glass fiber reinforced polymer composites. On the other hand, the maleic anhydride compatibilized blends prepared from the two-step process showed lower mechanical performance, which was attributed to the poorer processing behavior leading to the degradation of PP. The effects of the processing steps, temperatures, and compatibilizer addition on the mechanical properties of the PP/LCP blends are discussed.  相似文献   

15.
Polypropylene (PP) was melt‐blended in a single‐screw extruder with a thermotropic Vectra B‐950 liquid crystalline polymer (LCP) in different proportions. The mechanical properties of such blends were compared in respect of their Young's moduli, ultimate tensile strength (UTS), percent elongation at break, and toughness to those of pure PP. The thermal properties of these blends were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The morphology was studied by using a polarizing light microscope (PLM) and a scanning electron microscope (SEM) while the rheological aspects of the blends and the pure PP were studied by a Haake Rheowin equipment. Mechanical analysis (tensile properties) of the blends showed pronounced improvement in the moduli and the UTS of the PP matrix in the presence of 2–10% of LCP incorporation. TGA of all the blends showed an increase in the thermal stability for all the blends with respect to the matrix polymer PP, even at a temperature of 410°C, while PP itself undergoes drastic degradation at this temperature. DSC studies indicated an increase in the softening range of the blends over that of PP. Morphological studies showed limited mixing and elongated fibril formation by the dispersed LCP phase within the base matrix (PP) at the lower ranges of LCP incorporation while exhibiting a tendency to undergo gross phase separation at higher concentrations of LCP, which forms mostly agglomerated fibrils and large droplets. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 767–774, 2003  相似文献   

16.
The miscibility in the melt and solid state of blends made of poly(p-phenylene sulphide) (PPS) with a liquid crystalline polymer (LCP) from DuPont was studied by polarized light optical microscopy (PLOM) and dynamic thermal mechanical analysis. Both techniques showed that the PPS and the LCP are immiscible in both states, and that the critical concentration for the formation of fibrils C*, in this particular system, was located between 20 and 25 wt % LCP. The resultant blend morphology was studied by PLOM and scanning electron microscopy (SEM). It was observed that when LCP fibrils are formed in the PPS matrix, the PPS macromolecules will crystallize around the LCP fibrils by forming columnar layers called transcrystallites. These transcrystallites are the result of the LCP acting as a nucleating agent for the PPS, promoting heterogeneous nucleation. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
WB Xie  KC Tam  CY Yue  YC Lam  L Li  X Hu 《Polymer International》2003,52(5):733-739
A co‐polyester liquid crystalline polymer (LCP) was melt blended with an acrylonitrile–butadiene–styrene copolymer (ABS). LCP fibrils are formed and a distinct skin/core morphology is observed in the injection moulded samples. At higher LCP concentration (50 wt%), phase inversion occurs, where the dispersed LCP phase becomes a co‐continuous phase. While the tensile strength and Young's modulus remain unchanged with increasing LCP content up to 30 wt% LCP, a significant enhancement of the modulus at 50 wt% LCP is observed due to the formation of co‐continuous morphology. The blend modulus is lower than the values predicted by the rule of mixtures, suggesting a poor interface between the LCP droplets and ABS matrix. A copolymer of styrene and maleic anhydride (SMA) was added in the LCP/ABS blends during melt blending. It is observed that SMA has a compatibilizing effect on the blend system and an optimum SMA content exists for mechanical properties enhancement. SMA improves the interfacial adhesion, whereas excess of SMA reduces the LCP fibrillation. Copyright © 2003 Society of Chemical Industry  相似文献   

18.
Blends of a polyester elastomer (PEL) having a hard segment of polyester (PBT) and soft segment of polyether (PTMG) and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate), were prepared in a twin-screw extruder. Specimens for mechanical testing were prepared by injection molding. The morphology of the LCP/PEL blends was characterized under different processing conditions. To determine what conditions were necessary for the development of a fibrillar morphology of LCP, we have studied the effect of processing method (extrusion and injection molding), injection molding temperature (below and above the melting point of LCP), and gate position in the mold (direct gate and side gate). SEM studies revealed that some extensional flow was required for the fibrillar formation of LCP and the fibrillar structure of LCP was controlled by the processing method. The morphology of the blends was found to be affected by their compositions and processing conditions. SEM studies revealed that finely dispersed spherical domains of LCP were formed in the PEL matrix and the inclusions were deformed in fibrils from the spherical droplets with increasing LCP content and injection temperature. The mechanical properties of the LCP/PEL blends were also found to be affected by their compositions and processing conditions. The mechanical properties of LCP/PEL blends were very similar to those of polymeric composite. An attempt was made to correlate the structure of the blends from the scanning electron microscope with the measured mechanical properties. All of the aspects of the morphology were possible to explain in terms of the mechanical properties of the blends. A DSC study revealed that the crystallization of PEL was accelerated by the addition of LCP in the matrix and a partial compatibility between LCP and PEL was predicted. The rheological behavior of the LCP/PEL blends was found to be very different from that of the parent polymers, and significant viscosity reductions were observed in the blend consisting of only 5 wt% of LCP.  相似文献   

19.
The domain morphology and mechanical properties of fibers spun from blends of a thermotropic liquid crystalline polymer, Vectra A-900, and poly(ethylene terephthalate) (PET) have been studied across the entire composition range. The PET phase was removed by etching to reveal fibrillar LCP domains in the blends of all compositions. The 0.5μm fibril appeared to be the basic structural entity of the LCP domains. A primary effect of composition was the change from discontinuous fibrils when the composition was 35 and 60% by weight LCP to continuous fibrils when the composition was 85 and 96% LCP. This transition had major ramifications on the mechanical properties: the modulus increased abruptly between 60 and 85% LCP, and a change in the fracture mode from brittle fracture to a splitting mode was accompanied by an increase in fracture strength. Different models were required to describe the mechanical properties of the discontinuous and continuous fibril morphologies. Analytic models for short aligned fibers of Nielsen, and Kelly and Tyson were applicable when the LCP fibrils were discontinuous, while modulus and strength of blend fibers with continuous LCP fibrils were discribed by the rule of mixtures.  相似文献   

20.
This study analyzes the influence of blend ratio and draw ratio on the fiber properties of blend fibers composed of poly (ethylene terephthalate), or PET, and polypropylene, or PP, (hereafter referred to as PET/PP conjugate fibers). For a comparison, PET and poly (butylene terephthalate), or PBT blends, (hereafter referred to as PET/PBT conjugate fibers) are also investigated. Various blend ratios of fibers are melt spun and drawn in a multistep drawing method. The conjugate fibers are evaluated using tenacity, Young's modulus, wide-angle X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) tests. The results show that multistep drawing using a lower first-step draw ratio provides a higher tenacity and Young's modulus. Furthermore, when the blend ratio is 75/25 in a PET/PP conjugate fiber and 50/50 in a PET/PBT conjugate fiber, the polymer components undergo a phase inversion phenomenon. A PP sub-micron (10?1 ~ 100 micron) fiber of about 0.0001 ~ 0.00017 tex in fineness, or about 0.4 ~ 0.5 micron in diameter, can be obtained when PET/PP conjugate fiber is treated with a 25% NaOH aqueous solution by weight. However, A PBT sub-micron fiber cannot be achieved using a PET/PBT conjugate fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号