首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vermiculite (VMT) was successfully modified by cationic exchange of hexadecyltrimethyl ammonium ions, covalent grafting of glycidoxypropyl trimethoxy silane, and combining grafting and intercalation. The complete removal of excess surfactant from VMT resulted in a change in the interlayer structure and higher thermal stability of the organoclay mineral. The organosilane grafted on the clay mineral edges improved the thermal stability of the organoclay mineral. The organoclay minerals were melt compounded with poly(l-lactic acid) (PLLA), and the effect of the nanofiller concentration, type of modification and organoclay mineral purity on the nanostructure and thermal properties of nanocomposites was investigated. The removal of excess surfactant and organosilane functionalization enhanced the dispersion level of the organoclay mineral. PLLA degradation that occurred during nanocomposite processing depended on the clay mineral concentration, the extent of clean surface and the clay mineral dispersion state. The removal of excess surfactant and organosilane functionalization improved the thermal stability of nanocomposites.  相似文献   

2.
A trifunctional organo alkoxysilane (3‐aminopropyl)triethoxysilane (γ‐APS) has been used as reagent for the chemical modification of montmorillonite clay. Silane grafting was taken place in dry and hydrolyzing conditions. Silane grafted and pristine clay took part in interfacial polycondensation process to deposit a layer of nylon‐66 onto the clay lamellae and therefore, enhance their affinity with nylon‐66 matrix. Evidence of presence of grafted silane molecules and deposition of nylon‐66 on clay particles were provided by Fourier transform‐infrared, thermogravimetric analysis (TGA), and X‐ray diffraction (XRD). Such modified clays and pristine clays were melt compounded with nylon‐66. The structures of the resulting nylon composites were characterized using XRD and transmission electron microscopy and the results showed presence of both intercalation and exfoliation. TGA thermograms of nanocomposites indicated improved thermal stability upon the incorporation of silane grafted montmorillonite. Furthermore, differential scanning calorimetry scans showed that silane modified clays promoted crystallization in nanocomposites. Increase of storage modulus and depression of tan δ peak in nanocomposites in dynamical mechanical thermal analysis were observed. The rheological properties of nylon‐66 and nanocomposites were also evaluated and differences in values of complex viscosity of samples were noticed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
PET‐clay nanocomposites were prepared using alkyl quaternary ammonium and phosphonium modified clays by melt‐mixing at 280°C using a micro twin screw extruder. The latter clays were prepared by synthesizing phosphonium surfactants using a simple one‐step method followed by a cation exchange reaction. The onset temperature of decomposition (Tonset) for phosphonium clays (>300°C) was found to be significantly higher than that of ammonium clays (around 240°C). The clay modified with a lower concentration (0.8 meq) of phosphonium surfactant showed a higher Tonset as compared to the clay modified with a higher concentration (1.5 meq) of surfactants. Nanocomposites prepared with octadecyltriphenyl phosphonium (C18P) modified clay showed a higher extent of polymer intercalation as compared with benzyltriphenylphosphonium (BTP) and dodecyltriphenylphosphonium (C12P) modified clays. The nanocomposites prepared with ammonium clays showed a significant decrease in the molecular weight of PET during processing due to thermal degradation of ammonium surfactants. This resulted in a substantial decrease in the mechanical properties. The molecular weight of PET was not considerably reduced during processing upon addition of phosphonium clay. The nanocomposites prepared using phosphonium clays showed an improvement in thermal properties as compared with ammonium clay‐based nanocomposites. Tonset increased significantly in the phosphonium clay‐based nanocomposites and was higher for nanocomposites which contained clay modified with lower amount of surfactant. The tensile strength decreased slightly; however, the modulus showed a significant improvement upon addition of phosphonium clays, as compared with PET. Elongation at break decreased sharply with clay. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
A study to investigate matrix properties and their interaction with loaded nanoclay was designed under controlled clay dispersion. Metallocene polyethylene grafted vinyltriethoxy silane (mPE‐g‐silane) was served as the matrix, with or without silane crosslinking (grafting and post crosslinking with catalyst versus only grafting without catalyst), to assess the strength of commercial organoclay (20A)‐filled nanocomposites prepared via a melt mixing. According to X‐ray diffraction and transmission electron microscopy analyses, all nanocomposites achieved similar dispersion degrees at specific clay contents mainly due to the silane interaction with the dispersed clay via hydrogen bonding and/or chemical bonding. Chemical bonding of grafted silane with clay was inferred based on the slightly higher crosslinking degree with increasing clay content for crosslinked cases. For uncrosslinked cases, the crosslinking degree was virtually zero regardless of clay content. The dynamic mechanical properties revealed enhanced interaction between mPE‐g‐silane and clay with increasing clay content based on the increased glass transition temperatures. Young's modulus of nanocomposites with crosslinked cases showed higher values in comparison with uncrosslinked cases at a specific clay content, indicating the significance of matrix crosslinking effect and the effective interfacial interaction between silane and clay especially at higher clay content. To the authors' best knowledge, this is the first study which generally maintains similar clay dispersions through the effect of uncrosslinking (only grafting) and crosslinking (grafting and post crosslinking), and then probes the effect of matrix properties and interfacial interactions at the large deformation state (tensile test) and small deformation state (cutting test). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
We prepared polypropylene nanocomposites based on a modified organoclay with isobutyl trimethoxysilane to investigate the effects of such modifications of organoclay on the microstructure and properties of the nanocomposite. The organoclay was preliminarily intercalated with distearyldimethylammonium bromide via an ion exchange before being grafted with silane. The morphology of the polypropylene–organoclay nanocomposites was characterized by wide‐angle X‐ray diffraction analyses and transmission electron microscopy. The modification of the edges of clay platelets with organic silane resulted in a more uniform dispersion of nonagglomerated tactoids, which consisted of several intercalated clay platelets. However, the unmodified organoclay led to a mixed morphology with both agglomerated and nonagglomerated tactoids. The grafting of the clay edges with organic silane also affected the linear viscoelastic properties of the nanocomposites in the melt state, which was shown to be sensitive to the interaction between the edges of clay platelets as well as to the interaction of the polymer with the platelet edges. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1752–1759, 2006  相似文献   

6.
An alkylammonium intercalated montmorillonite (A‐MMT) was modified by edge grafting with 3‐glycidoxypropyltrimethoxysilane. In comparison with poly(ethylene terephthalate) (PET)/A‐MMT, the resultant grafted clay, S‐A‐MMT, exhibited improved miscibility with PET matrix and revealed better dispersion state in the melting compounded PET/S‐A‐MMT nanocomposites. As a result, the PET/S‐A‐MMT nanocomposite had slower degradation rate owing to the enhanced clay barrier effect. Meanwhile, the nanocomposite exhibited lower degradation onset temperature under nitrogen because of the clay catalysis effect, which can be explained by the decreasing degradation reaction energy calculated from Coats–Redfern method of degradation kinetics. In the other hand, nanocomposite with better clay dispersion state exhibited increasing thermal oxidative stability due to clay barrier effect of hindering oxygen to diffuse in, which accorded with the continuous and compact char surface formed during polymer degradation. The clay catalysis and barrier effect of silicate layers were presented directly in isothermal oxidative TGA experiment. Furthermore, the mechanical and crystallization properties of PET/clay nanocomposites were investigated as well. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

7.
Effect of different solvents on the clay dispersion and the final properties of the thermoplastic polyurethanes (TPUs)/clay nanocomposites prepared via solution mixing was studied. The polyether‐ and polyester‐based TPUs were used along with organically modified clays (C30B, C25A, and C15A) and the pristine montmorillonite (PM). Dimethylacetamide (DMAc) and tetrahydrofuran (THF) were used as solvents for solution mixing. Nanocomposites containing C30B prepared from DMAc solution showed the better clay dispersion than the ones from THF solution, while THF gave the better dispersion of clays for nanocomposites containing C15A. Morphologies of the nanocomposites were observed to be determined not only by the state of clay dispersion in different solvents but also by the interaction between the polymer and the specific clay. Affinity between solvents and clays becomes important when there is no specific interaction between the clay and the polymer of interest, or when the interaction between the two is rather weak. The compatibility between clays and polymers becomes dominating if there exists a specific interaction between the two. FTIR analysis was conducted to study the interactions involved in the nanocomposites. Dynamic mechanical properties measurement was also carried out to see the effect of solvents. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Montmorillonite K-10 clay was surface-modified using the cationic surfactants viz., butyltriphenylphosphonium bromide (BTPB), cetyltrimethylammonium bromide (CTAB), and tributylhexadecylphosphonium (TBHPB) bromide. Of these, CTAB and TBHPB modified clays were chosen for surface grafting with 3-aminopropyltrimethoxy silane (APTMS) coupling agent. The nanocomposites were fully characterized by powder X-ray diffraction (XRD), solid state 29Si NMR, Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TGA). The XRD and FTIR confirmed the increase in basal plane spacing and intercalation of long chain surfactant molecules into the clay gallery, while TGA indicated the onset degradation and 10% weight loss temperature (T10%) in case of quaternary phosphonium modified clay that was higher than the corresponding ammonium counterpart; these values increased further after the grafting with APTMS. The 29Si NMR peak deconvolution study suggested that the molar % of T units and total degree of silica condensation for different APTMS grafted clay samples were more than 20% and 80%, respectively.  相似文献   

9.
Summary Recycled PVC/clay nanocomposites were prepared by melt mixing of recycled PVCs and modified clays. Characterization of the nanostructure of the nanocomposites was carried out using wide angle X-ray diffraction (WAXD) and transmission electron microscopy(TEM). In case of 10wt.%, the characteristic peak of modified clay was perfectly disappeared, because of aids of plasticizers as co-intercalator. Thermal stability was evaluated from the thermal decomposition behaviors and linear dimension changes by TGA and TMA system. Coefficients of thermal expansion of the nanocomposites were also observed from TMA analysis. Dynamic mechanical properties were evaluated using DMA system. The thermal and mechanical properties of the nanocomposites were improved simultaneously for varied clay loadings, 1,3,5,10wt.%, compared to recycled PVC. Especially, the storage modulus of the nanocomposites with 10wt.% clay loading was increased 11 times compared to that of recycled PVC.  相似文献   

10.
Summary: Linear low‐density polyethylene (LLDPE)/clay nanocomposites are obtained and studied by using a zinc‐neutralized carboxylate ionomer as a compatibilizer. LLDPE‐g‐MA is used as a reference compatibilizer. Two different clays, natural montmorillonite (Closite Na+) and a chemically modified clay Closite 20A have been used. Nanocomposites are prepared by melt blending in a twin‐screw extruder using two mixing methods: two‐step mixing and one‐step mixing. The relative influence of each compatibilizer is determined by wide‐angle X‐ray diffraction structural analysis and mechanical properties. The results are analyzed in terms of the effect of the compatibilizing agent and incorporation method in the clay dispersion, and the mechanical properties of the nanocomposites. Experimental results confirm that the film samples with ionomer show a good mechanical performance only slightly below that of the samples with maleic anhydride (MA). The two‐step mixing conditions result in better dispersion and intercalation for the nanofillers than one‐step mixing. The exfoliation of clay platelets leads to an improved thermal stability of the composite. The oxygen permeability of the clay nanocomposites, using ionomer as a compatibilizer, is decreased by the addition of the clay.

TEM image of a PE/4 wt.‐% Closite 20A nanocomposite formed using ionomer.  相似文献   


11.
In this study, a modified montmorillonite (W-H-OMMT) was prepared by intercalating pristine montmorillonite using a phosphorus salt and a subsequent grafting using a long-alkyl-chain silane, and the nanocomposites with poly[styrene–(ethylene-co-butylene)–styrene] (SEBS) were prepared by melt blending. The pristine and the modified MMT were characterized by XRD, FT-IR, XPS and SEM. The morphology of the SEBS nanocomposites was studied using XRD, SEM and TEM, and the results can be correlated well with transparency, color, surface contact angle, rheological behavior, thermal and mechanical properties of the nanocomposites. As compared with pristine and the modified clay, more uniform dispersion and improved compatibility are observed for the W-H-OMMT in the SEBS matrix, resulting in better transparency and more hydrophobic surface for the SEBS/W-H-OMMT nanocomposite. Better thermal stability, a synergetic effect in tensile strength and elongation at break were observed, which can be attributed to well dispersion of the W-H-OMMT, as well as perfect adhesion between the W-H-OMMT and the SEBS matrix from the enhanced molecular interaction between the long-alkyl chain and the SEBS molecules. Compared to pure SEBS, the strength and elongation of SEBS/W-H-OMMT nanocomposite increased by 8.5 and 7.6 %; meanwhile, the water contact angel and the 50 % weight loss temperature increased by 5.3 and 13.1 %, respectively. Appropriate silane grafted organic montmorillonite provided an efficient way for the overall performance improvement of SEBS.  相似文献   

12.
Since the end of the last century, the discovery of polymer nanocomposites and their ever-expanding use in various applications has been the result of continuous developments in polymer science and nanotechnology. In that regard, progress in developments on the use of modified natural and synthetic clays for designing polymer nanocomposites is presented herein. The modified clays used in composite preparation include natural clays such as montmorrilonite, hectorite, sepiolite, laponite, saponite, rectorite, bentonite, vermiculite, biedellite, kaolinite, and chlorite, as well as synthetic clays including various layered double hydroxides, synthetic montmorrilonite, hectorite, etc. The preparation, structure and properties of polymer nanocomposites using the modified clays are discussed. Even at a low loading, these composites are endowed with remarkably enhanced mechanical, thermal, dynamic mechanical, adhesion and barrier properties, flame retardancy, etc. The properties of the nanocomposites depend significantly on the chemistry of polymer matrices, nature of clays, their modification and the preparation methods. The uniform dispersion of clays in polymer matrices is a general prerequisite for achieving improved mechanical and physical characteristics. Various theories and models used to design polymer/clay nanocomposites have also been highlighted. A synopsis of the applications of these advanced, high-performance polymer nanocomposites is presented, pointing out gaps to motivate potential research in this field.  相似文献   

13.
Poly(butylene terephthalate)–clay nanocomposites with three different organically modified clays were prepared via melt blending in a twin‐screw extruder. Decyl triphenylphosphonium bromide, hexadecyl triphenylphosphonium bromide, and cetyl pyridinium chloride were used to modify the naturally occurring montmorillonite clay. The organically modified clays were characterized with X‐ray diffraction for the d001‐spacing and with thermogravimetric analysis to determine the thermal stability. The prepared nanocomposites were injection‐molded and examined for the dispersion quality of the clay, the mechanical properties, and the rheological behavior. The tensile strength of the nanocomposites increased with a 1% addition of clay; however, more clay decreased the tensile strength. Nanocomposites with finely dispersed clay platelets and nanocomposites with poorly dispersed clay platelets showed very different rheological behaviors. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
In the present paper, three ammonium salts namely, tetraethylammonium bromide (TEAB), tetrabutylammonium bromide (TBAB), and cetyltrimethylammonium bromide (CTAB) were employed to prepare organoclay by cation exchange process. Polystyrene (PS) /clay nanocomposites were prepared by melt blending using commercial nanoclay and organoclays prepared using above mentioned salts. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis indicated that the modified clays were intercalated and/or exfoliated into the polystyrene matrix to a higher extent than the commercial nanoclay. Further, amongst the modified organoclays, TBAB modified clay showed maximum intercalation of clay layers and also exfoliation to some extent into the polystyrene matrix. TEM micrograph exhibited that TBAB modified clay had the best nanoscale dispersion with clay platelet thickness of ∼6–7 nm only. The mechanical properties of the nanocomposites such as tensile, flexural and izod impact strength were measured and analyzed in relation to their morphology. We observed a significant improvement in the mechanical properties of polystyrene/clay nanocomposites prepared with modified clays as compared to commercial organoclay, which followed the order as; PS/TBAB system > PS/CTAB system > PS/TEAB system. Thermogravimetric analysis (TGA) demonstrated that T10, T50 and Tmax were more in case of polystyrene nanocomposites prepared using modified organoclays than nanoclay [nanolin DK4] and maximum being in the case of PS/CTAB system. The results of Differential Scanning Calorimetry (DSC) confirmed that the glass transition temperature of all the nanocomposites was higher as compared to neat polystyrene. The nanocomposites having 2% of TBAB modified clay showed better oxygen barrier performance as compared to polystyrene.  相似文献   

15.
黄晓玲  王晓丽  张兵兵  苏海全 《化工进展》2011,30(5):1045-1049,1096
用聚甲基丙烯酸甲酯苄基季铵盐和聚甲基丙烯酸甲酯十八烷基季铵盐修饰蒙脱土,制备出两种有机土(MAPS-B-MMT和MAPS-O-MMT),通过熔融共混法制备聚对苯二甲酸丁二醇酯/蒙脱土(PBT/MMT)纳米复合材料,考察了有机土含量和修饰剂结构对复合材料性能的影响。TEM结果显示,两类复合材料均为插层型纳米复合材料。热稳定性能研究表明,PBT/MAPS-B和PBT/MAPS-O两个体系热稳定性有较大的改善,材料的初始降解温度均比纯PBT提高,PBT/MAPS-O-2纳米复合材料的初始降解温度提高了20 ℃;热稳定性受到蒙脱土分散性影响,随着黏土含量增加,蒙脱土分散性变差,导致材料初始降解温度下降,质量分数2%为蒙脱土的最佳含量;加入有机土降低了材料的熔融温度,提高了材料的结晶速率和结晶度。  相似文献   

16.
Clay containing polypropylene (PP) nanocomposites were prepared by direct melt mixing in a twin screw extruder using different types of organo‐modified montmorillonite (Cloisite 15 and Cloisite 20) and two masterbatch products, one based on pre‐exfoliated clays (Nanofil SE 3000) and another one based on clay–polyolefin resin (Nanomax‐PP). Maleic anhydride‐grafted polypropylene (PP‐g‐MA) was used as a coupling agent to improve the dispersability of organo‐modified clays. The effect of clay type and clay–masterbatch product on the clay exfoliation and nanocomposite properties was investigated. The effect of PP‐g‐MA concentration was also considered. Composite morphologies were characterized by X‐ray diffraction (XRD), field emission gun scanning electron microscopy (FEG‐SEM), and transmission electron microscopy (TEM). The degree of dispersion of organo‐modified clay increased with the PP‐g‐MA content. The thermal and mechanical properties were not affected by organo‐modified clay type, although the masterbatch products did have a significant influence on thermal and mechanical properties of nanocomposites. Intercalation/exfoliation was not achieved in the Nanofil SE 3000 composite. This masterbatch product has intercalants, whose initial decomposition temperature is lower than the processing temperature (T ~ 180°C), indicating that their stability decreased during the process. The Nanomax‐PP composite showed higher thermal and flexural properties than pure PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
The compatibilization effects provided by an amine silane modified polyethylene (PEgAS) versus those by a maleated polyethylene (PEgMA), for forming PE–clay based nanocomposites, were studied. PEgAS was prepared by condensation reaction between PEgMA and g-(aminopropyl) triethoxy silane (APTS). It had the triethoxy-silane functionality on one end and was solution mixed with an organomodified clay (Cloisite 20A) to promote the reaction of the silane groups with the hydroxyl groups on the surface of the clay. The obtained masterbatches were then compounded with PE to obtain PE–clay nanocomposites by melt blending in a twin screw extruder, using different compatibilizers and clay contents. FTIR, XRD, STEM, and Instron were used to characterize the structural, morphological, and mechanical properties of the nanocomposites. Results showed that the PEgAS formed more exfoliated–intercalated morphology and better mechanical properties, especially in modulus and tensile strength as compared with PEgMA composites and neat PE. The Young modulus was 35% higher, and the tensile strength was 18% higher with PEgAS composites.  相似文献   

18.
The styrene butadiene rubber (SBR)–clay nanocompounds were prepared by the latex compounding method, and then hexadecyl trimethyl ammonium bromide (C16) and 3‐aminopropyl triethoxy silane (KH550) were added into these nanocompounds on a two‐roll mill to prepare nanocomposites with strong interfacial interaction. The structure and properties of SBR–clay nanocomposites were carefully studied by X‐ray diffraction (XRD) studies, transmission electron microscopy (TEM), Rubber Process Analyzer (RPA), and mechanical testing. Compared with unmodified nanocomposites, the dispersion structure of modified SBR–clay nanocomposites is better with part rubber‐intercalated or part modifier‐intercalated structure. The tensile strength and the modulus at 300% elongation of modified SBR–clay nanocomposites are higher than three times of those of unmodified nanocomposites, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1826–1833, 2007  相似文献   

19.
Polystyrene (PS)/organomontmorillonite nanocomposites were prepared by melt processing with a twin‐screw extruder. Sodium montmorillonite was organically modified with stearyl trimethyl ammonium chloride to evaluate the effect of clay modification on the performance of the nanocomposites. A comparative account of nanocomposites prepared with the commercial clay Cloisite 20A (C20A) is presented. X‐ray diffraction studies indicated that the clay layers were completely dispersed, and a delaminated structure was formed in the case of C20A/PS and organomontmorillonite/PS nanocomposites. The dispersion characteristics of the clays within the matrix polymer were further investigated through transmission electron microscopy analysis. Mechanical tests revealed increases in the tensile, flexural, and impact strengths of 83, 55, and 74%, respectively, for C20A/PS nanocomposites at a 5% clay loading. The viscoelastic response of the nanocomposites, studied with dynamic mechanical analysis, also showed a substantial increase in the storage modulus of the nanocomposites with the incorporation of organically modified nanoclays. Furthermore, the melt‐state rheology of the organically modified nanocomposites displayed three distinct regions—glassy, plateau, and terminal—from the high‐frequency region to the low‐frequency region, with a considerable increase in the storage modulus in the glassy and terminal regions. Differential scanning calorimetry and thermogravimetric analysis were also used to evaluate the effect of the addition of nanoclays on the glass‐transition temperature and thermal stability of the PS matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Poly (styrene-acrylonitrile) (SAN)/clay nanocomposites have successfully been prepared by melt intercalation method. The hexadecyl triphenyl phosphonium bromide (P16) and cetyl pyridium chloride (CPC) are used to modify the montmorillonite (MMT). The structure and thermal stability property of the organic modified MMT are, respectively characterized by Fourier transfer infrared (FT-IR) spectra, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results indicate that the cationic surfactants intercalate into the gallery of MMT and the organic-modified MMT by P16 and CPC has higher thermal stability than hexadecyl trimethyl ammonium bromide (C16) modified MMT. The influences of the different organic modified MMT on the structure and properties of the SAN/clay nanocomposites are investigated by XRD, transmission electronic microscopy (TEM), high-resolution electron microscopy (HREM), TGA and dynamic mechanical analysis (DMA), respectively. The results indicate that the SAN cannot intercalate into the interlayers of the pristine MMT and results in microcomposites. However, the dispersion of the organic-modified MMT in the SAN is rather facile and the SAN nanocomposites reveal an intermediate morphology, an intercalated structure with some exfoliation and the presence of small tactoids. The thermal stability and the char residue at 700°C of the SAN/clay nanocomposites have remarkably enhancements compared with pure SAN. DMA measurements show that the silicate clays improve the storage modulus and glass transition temperature (Tg) of the SAN matrix in the nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号