首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ammonium nitrate (AN)‐based composite propellants have several major problems, namely, a low burning rate, poor ignitability, low energy, and high hygroscopicity. The addition of a burning catalyst proved to be effective in improving the burning characteristics of AN‐based propellants. In this study, the burning characteristics of AN‐based propellants supplemented with MnO2 as a burning catalyst were investigated. The addition of MnO2 is known to improve the ignitability at low pressure. The most effective amount of MnO2 added (ξ) for increasing the burning rate is found to be 4 %. The increasing ratio with ξ is virtually independent of the burning pressure and the AN content. However, the pressure exponent unfortunately increased by addition of MnO2. The apparent activation energy of the thermal decomposition for AN and the propellant is decreased by addition of MnO2. From thermal decomposition kinetics it was found that MnO2 could accelerate the thermal decomposition reaction of AN in the condensed phase, and therefore, the burning characteristics of the AN‐based propellant are improved.  相似文献   

2.
Ammonium nitrate (AN)‐based composite propellants have attracted a considerable amount of attention because of the clean burning nature of AN as an oxidizer. However, such propellants have several disadvantages such as poor ignition and a low burning rate. In this study, the burning characteristics of AN‐based propellants supplemented with Fe2O3 as a burning catalyst were investigated. The addition of Fe2O3 is known to improve the ignitability at low pressure. Fe2O3 addition also increases the burning rate, while the pressure exponent generally decreases. The increasing ratio (R) of the burning rate of the AN/Fe2O3 propellant to that of the corresponding AN propellant vs. the amount of Fe2O3 added (ξ) depends on the burning pressure and AN content. R decreases at threshold value of ξ. The most effective value of ξ for increasing the burning rate was found to be 4 % for the propellant at 80 % AN, and the value generally decreased with decreasing AN content. According to thermal decomposition kinetics, Fe2O3 accelerates the reactions of AN and binder decomposition gases in the condensed‐ and/or gas‐phase reaction zones. The burning characteristics of the AN‐based propellant were improved by combining catalysts with differing catalytic mechanisms instead of supplementing the propellant with a single catalyst owing to the multiplicative effect of the former.  相似文献   

3.
Although a polytetrahydrofuran (PTHF) blend with added glycerin as a crosslinking modifier is an effective binder for improving the performance of a propellant, a burning catalyst is required for the combustion of the ammonium nitrate (AN)/PTHF/glycerin propellant. MnO2 and Fe2O3 are useful burning catalysts for AN‐based propellants. The thermal decomposition behaviors of the AN/PTHF/glycerin propellant supplemented with MnO2 and Fe2O3 catalysts, and the catalytic effect of these catalysts on the burning characteristics was investigated in this study. The thermal decomposition behaviors of these propellants depended on the kind of catalyst used. The propellants containing MnO2 burned above 4 MPa, while those containing Fe2O3 burned above 0.5 MPa. The burning rate increased in the order, (AN/PTHF/Fe2O3)<(AN/PTHF/MnO2)<(AN/PTHF/MnO2/Fe2O3). The improvement in the ignitability and burning rate was dependent on the kind of catalyst used. The burning characteristics of the AN/PTHF/glycerin propellants were improved by the combined effect of multiple catalysts with differing catalytic mechanisms, as compared to the propellant supplemented with any single catalyst.  相似文献   

4.
Ammonium perchlorate is the most widely employed oxidizer for composite solid propellants. When exposed to atmosphere, it absorbs moisture and agglomerates. It is usually vacuum dried in order to avoid this agglomeration. When ammonium perchlorate that has been exposed to atmosphere for a certain period of time, is used in making a composite solid propellant, the burning rate is different because of the change in particle size distribution due to its agglomeration. This change in burning rate will change the thrust‐time profile from that of what it is designed for. As one goes to a finer ammonium perchlorate particle size this problem becomes more evident. Experimental studies aimed at reducing the agglomeration of ammonium perchlorate by coating it with activated charcoal. Ammonium perchlorate coated with 1 % activated charcoal showed almost no agglomeration, even when the particle size of ammonium perchlorate is approx. 1 μm. The burning rates also remained unchanged when ammonium perchlorate coated with 1 % activated charcoal was employed in propellant composition, after it has been exposed to the atmosphere for a period of 1 h.  相似文献   

5.
Thermal decomposition and the burning properties of BAMO based propellants with HMX or AN/HMX have been investigated. The heat generated by the azide binder decomposition initiated and accelerated the thermal decomposition of HMX and AN. Ammonium perchlorate (AP) and lead stearate with carbon black significantly altered the mechanisms of the thermal decomposition and the burning properties of the HMX based propellants. AP showed an increase in burning rate with a slight decrease in burning rate pressure exponent. The lead catalyst yielded high value of the burning rate with the lowest pressure exponent. The ammonium dichromate also influenced the mechanisms of the thermal decomposition and the burning properties of the AN/HMX samples. The combination of ammonium dichromate and copper chromite was the most effective on the burning rate augmentation of AN/HMX based propellants. AN sublimed and evaporated from the condensed phase and mainly reacted exothermically in the gas phase HMX and AN/HMX based propellants showed smokeless burning characteristics in the small rocket motor combustion tests.  相似文献   

6.
Bubble contamination in an ammonium perchlorate (AP)‐based composite propellant has a positive effect on the burning rate. However, the quantitative effect of the bubble contamination on the burning rate has never been revealed. In order to clarify the relationship between the increase in the burning rate and the void fraction of the propellant, propellants were prepared with fine porous AP particles (PoAP) or fine hollow AP particles (HoAPs), and their burning rate characteristics were investigated. The voids inside AP particles have the effect of increasing the burning rate. The increase in the burning rate is enhanced linearly as the void fraction increases. The effect of the void fraction on the burning rate for a propellant containing PoAP is not identical with that for a propellant containing HoAP. It was found that the effect of the void fraction on the burning rate could be estimated by the void fraction when the bubble contamination is uniform in size and shape.  相似文献   

7.
Ammonium nitrate (AN) is used as an oxidant in a series of systems with a wide spectrum of applications, from explosive compositions up to smokeless stoichiometric self‐burning compositions with low combustion temperature. The knowledge of the thermal stability of such compositions is of great importance in using them in practice. In this work the research of kinetics of heat release in the interaction of AN with different organic compounds has been performed using the automatic differential calorimeter.  相似文献   

8.
The burning rate of AP/HTPB composite propellant increases with increasing AP content and with decreasing AP size. In addition, the burning rate can be enhanced with the addition of Fe2O3. The burning characteristics and thermal decomposition behavior of AP/HTPB composite propellant using coarse and fine AP particles with and without Fe2O3 at various AP contents were investigated to obtain an exhaustive set of data. As the AP content decreased, the burning rate decreased and the propellants containing less than a certain AP content self‐quenched or did not ignite. The self‐quenched combustion began at both lower and higher pressures. The lower limit of AP content to burn the propellant with coarse AP was lower than that with fine AP. The lower limit of AP content to burn was decreased by the addition of Fe2O3. The thermal decomposition behavior of propellants prepared with 20–80 % AP was investigated. The decrease in the peak temperature of the exothermic decomposition suggested an increased burning rate. However, a quantitative relationship between the thermochemical behavior and the burning characteristics, such as the burning rate and the lower limit of AP content to burn, could not be determined.  相似文献   

9.
In order to obtain a better understanding of the combustion characteristics of ammonium nitrate (AN) and carbon (C) mixtures (AN/C), burning tests and differential scanning calorimetry (DSC) were performed. AN mixed with carbon that is oxidized by nitric acid (HNO3), such as activated carbon (AC), burned at 1 MPa. However, AN mixed with carbon that is not oxidized by HNO3, such as graphite, did not burn under 7 MPa. Compositions with more than stoichiometric amounts of activated carbon had higher burning rates. Heat characteristic examinations found a similar trend. The burning rate of AN/AC mixed with CuO as a combustion catalyst deteriorated faster than an additive‐free one. From the DSC result, AN/AC/CuO had a higher onset temperature and a lower heat of reaction than AN/AC. These results suggested that, in the combustion wave of AN/C, a thermal decomposition zone is formed on the burning surface, and combustion performance was affected by the thermal decomposition of AN/C.  相似文献   

10.
This paper reports on the thermal and combustion behaviors of ammonium dinitramide (ADN). The thermal behavior is measured by a pressure thermogravimetric analysis (TGA) at pressures below 8 MPa. The burning rates of pure ADN and ADN/ammonium nitrate (AN) mixtures are measured in the range 0.2–12 MPa, and the burning temperature profiles are obtained using thermocouples with diameters of 5 and 25 μm. This report mainly focuses on the condensed‐phase behavior in the vicinity of a burning surface. The temperature profiles are complicated because the ADN decomposition and AN dissociation compete during the condensed phase, and the bubbles of the decomposition gas and gas‐phase flame also affect the surface temperature. AN addition helps to understand the effects of AN during the condensed phase, and it was shown that the burning temperature rises to the critical temperature of AN. Based on these experimental results, the pressure dependency of the burning rates is also discussed.  相似文献   

11.
Burning rate measurements were carried out for ammonium perchlorate/hydroxyl‐terminated polybutadiene (AP/HTPB) composite propellants with iron (Fe) nanoparticles as additives. Experiments were performed in a strand burner at pressures from 0.2 to 10 MPa for propellants containing approximately 80 % AP and Fe nanoparticles (60–80 nm) at concentration from 0 to 3 % by weight. It was found that the addition of 1 % Fe nanoparticles increased burning rate by factors of 1.2–1.6. Because Fe nanoparticles are oxidized on the surface and have high surface‐to‐volume ratio, they provide a large surface area of Fe2O3 for AP thermal decomposition catalysis at the burning propellant surface, while also providing added energy release due to the oxidation of nanoparticle sub‐shell Fe. The increase in burning rate due to Fe nanoparticle content is similar to the increase in burning rate caused by the addition of iron oxide (Fe2O3) particles observed in prior literature.  相似文献   

12.
The effects of porous structure on the burning characteristics of foamed NC‐based (nitrocellulose‐based) gun propellants were investigated by closed vessel and quenched combustion experiments. The foamed NC‐based TEGDN (triethylene glycol dinitrate) gun propellants with different porous structures were prepared by adjusting the process parameters in the foaming process. SEM (scanning electron microscopy) was used to observe the morphologies of foamed TEGDN propellants, and the densities of the foamed propellants were also measured to evaluate the porosities of foamed propellants. The experimental results showed that the burning characteristics of the novel foamed propellants are totally different from combustion characteristics of parallel‐layer. Further investigations revealed that the burning characteristics of the foamed NC‐based propellants largely depend on the porous structure, larger pores and higher porosity would lead to higher burning rate of the foamed TEGDN propellants.  相似文献   

13.
Mechanically‐activated nanocomposites (MANCs) of nano‐aluminum (nAl)/X (X=Cu, Ni, Zn, Mg, and graphite) were used as replacements for reference nAl powder and as catalytic ingredients in polyurethane (PU) propellants. The effects of their use on combustion heat, burning rate, and thermal decomposition were investigated. It was found that MANCs have catalytic effects and the modified propellants have enhanced the released heat, burning rate, and thermal decomposition properties. MANCs‐based propellants have improved the processing and the mechanical properties with acceptable safety aspects. They can be used for catalytic applications in solid propellants to improve their energetic, burning rate, and thermal decomposition characteristics.  相似文献   

14.
The burning rate pressure relationship is one of the important criteria in the selection of the propellant for particular applications. The pressure exponent (η) plays a significant role in the internal ballistics of rocket motors. Nitramines are known to produce lower burning rates and higher pressure exponent (η) values. Studies on the burning rate and combustion behavior of advanced high‐energy NG/PE‐PCP/AP/Al‐ and NG/PE‐PCP/HMX/AP/Al‐based solid rocket propellants processed by a conventional slurry cast route were carried out. The objective of present study was to understand the effectiveness of various ballistic modifiers viz. iron oxide, copper chromite, lead/copper oxides, and lead salts in combination with carbon black as a catalyst on the burning rate and pressure exponent of these high‐energy propellants. A 7–9 % increase in the burning rates and almost no effect in pressure exponent values of propellant compositions without nitramine were observed. However, in case of nitramine‐based propellants as compared to propellant compositions without nitramines, slight increases of the burning rates were observed. By incorporation of ballistic modifiers, the pressure exponents can be lowered. The changes in the calorimetric values of the formulations by addition of the catalysts were also studied.  相似文献   

15.
Nitramines are known to produce lower burning rates and higher pressure exponent (η) values. Studies on the burning rate and combustion behavior of advanced high‐energy NG/PE‐PCP/HMX/AP/Al based solid propellant processed by slurry cast route were carried out using varying percentages of HMX and AP. It was observed that propellant compositions containing only AP and Al loaded (total solids 75 %) in NG plasticized PE‐PCP binder produce comparatively lower pressure exponent (η) values similar to AP‐Al filled HTPB based composite propellants. However, energetic propellants containing high level of nitramine (40–60 %) produce high pressure exponent (0.8–0.9) values in the same pressure range. Incorporation of fine particle size AP (ca. 6 μm) and change in its concentration in the propellant composition reduces η value marginally and influences the burning rate. However, such compositions have higher friction sensitivity.  相似文献   

16.
It has been well established that sustained combustion in ammonium nitrate water‐based emulsions (AWEs) can only occur if the ambient pressure is held above some threshold value, usually referred to as the ‘minimum burning pressure’ (MBP). For the commercial explosives industry, a good knowledge of the MBP for particular AWE formulations is essential to estimate safe operating pressures for the associated manufacturing and handling processes. In these processes, AWE products are most often pumped in closed systems and at elevated temperature. While previous studies have established that the MBP can depend critically on major ingredients, its dependence on physical characteristics such as temperature and viscosity had never been investigated. Moreover, the consequences of alterations in measurement methodologies on the resulting measured MBP values had not been studied.  相似文献   

17.
Ammonium nitrate (AN) is an ionic solid commonly used as a fertilizer and in commercial blasting applications. Frequently, AN is mixed with a fuel and used in improvised explosives devices (IEDs). To characterize the low‐volatility components emanating from AN, a sample of AN was sealed inside a stainless steel chamber while a laminar flow of air swept the headspace vapor components into a water impinger or cold‐trap for pre‐concentration and subsequent analysis by ion chromatography (IC). Both collection methods were found to be 100 % efficient for collecting nitric acid vapor, whereas the collection efficiency for ammonia was dependent upon the collection method and, for the water impinging method, additionally upon the vapor concentration, humidity and flow rate. Cold‐trapping efficiency for ammonia was 4 %±2 % across all parameters studied. Water impinging was more efficient (20–70 %), but the efficiency varied according to each of the aforementioned variables. The characteristics of an AN vapor generated from a solid sample were found to vary as the sample approached equilibrium inside the chamber. Initially, large quantities of ammonia were observed, but as a steady state was achieved within the laminar flow and a dynamic equilibrium established, the ratio of ammonia to nitric acid in the effluent vapor dropped, although never becoming equimolar. The ratio was strongly dependent upon humidity.  相似文献   

18.
The thermal decomposition behavior and combustion characteristics of mixtures of ammonium dinitramide (ADN) with additives were studied. Micrometer‐sized particles of Al, Fe2O3, TiO2, NiO, Cu(OH)NO3, copper, CuO, and nanometer‐sized particles of aluminum (Alex) and CuO (nano‐CuO) were employed. The thermal decomposition was measured by TG‐DTA and DSC. The copper compounds and NiO lowered the onset temperature of ADN decomposition. The heat value of ADN with Alex was larger than that of pure ADN in closed conditions. The burning rates and temperature of the pure ADN and ADN/additives mixtures were measured. CuO and NiO enhance the burning rate, particularly at pressures lower than 1 MPa, because of the catalyzed decomposition in the condensed phase; the other additives lower the burning rate. This negative effect on the burning rate is explained based on the surface temperature measurements by a physicochemical mechanism, which involves a chemical reaction, a phase change of the ammonium nitrate, and the blown‐off droplets of the condensed phase.  相似文献   

19.
In recent years, there has been a considerable interest in the development of novel type of high performance propellants for use in solid rocket motors. Ammonium salt of dinitramidic acid NH4N(NO2)2 (ADN) has attracted wide interest as a potentially useful energetic oxidizer for rocket propellants because of its clean and environment‐friendly exhaust products during burning. ADN contains one N (NO2)2 group and its synthesis requires new type of N‐nitration. The present paper reviews the general synthetic methods used for the synthesis of inorganic, organic and metal dinitramide salts and their properties, with a special emphasis on ammonium dinitramide. The salient features with reference to the extent of conversion and ease of separation of the products of the various synthetic methodologies are also addressed.  相似文献   

20.
Most solid rockets are powered by ammonium perchlorate (AP) composite propellant including aluminum particles. As aluminized composite propellant burns, aluminum particles agglomerate as large as above 100 μm diameter on the burning surface, which in turn affects propellant combustion characteristics. The development of composite propellants has a long history. Many studies of aluminum particle combustion have been conducted. Optical observations indicate that aluminum particles form agglomerates on the burning surface of aluminized composite propellant. They ignite on leaving the burning surface. Because the temperature gradient in the reaction zone near a burning surface influences the burning rate of a composite propellant, details of aluminum particle agglomeration, agglomerate ignition, and their effects on the temperature gradient must be investigated. In our previous studies, we measured the aluminum particle agglomerate diameter by optical observation and collecting particles. We observed particles on the burning surface, the reaction zone, and the luminous flame zone of an ammonium perchlorate (AP)/ammonium nitrate (AN) composite propellant. We confirmed that agglomeration occurred in the reaction zone and that the agglomerate diameter decreased with increasing the burning rate. In this study, observing aluminum particles in the reaction zone near the burning surface, we investigated the relation between the agglomerates and the burning rate. A decreased burning rate and increased added amount of aluminum particles caused a larger agglomerate diameter. Defining the extent of the distributed aluminum particles before they agglomerate as an agglomerate range, we found that the agglomerate range was constant irrespective of the added amount of aluminum particles. Furthermore, the agglomerate diameter was ascertained from the density of the added amount of aluminum particles in the agglomerate range. We concluded from the heat balance around the burning surface that the product of the agglomerate range and the burning rate was nearly constant irrespective of the added amount of aluminum particles. Moreover, the reduced burning rate increased the agglomerate range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号