首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
橡胶复合材料在循环载荷下的疲劳损伤特性   总被引:5,自引:0,他引:5  
利用自行建立的疲劳试验系统,以单向聚酯帘线增强橡胶复合材料为对象,研究了循环载荷作用下影响橡胶复合材料疲劳性能的因素。结果表明,应力幅值和加载频率对橡胶复合材料疲劳性能影响较大,而平均应力影响较小。聚酯/橡胶复合材料的疲劳强化现象主要与组分材料本身的特性有关。  相似文献   

2.
采用MTS 810.23仪器对一种四步法三维编织复合材料结构在应力比为R(σmin/σmax)=0.1、频率为3Hz正弦波条件下进行三点弯曲疲劳测试,研究三维编织复合材料弯曲疲劳性能。通过实验仪器测试准静态三点弯曲和不同应力下三点弯曲疲劳性质得到Data数据,通过对数据分析获得σ-N曲线和最大最小挠度曲线,对比不同应力水平下材料破坏形态从而揭示材料弯曲疲劳机理。实验结果:50%应力水平下,试样经过106次以上的循环仍然没有破坏,80%、70%和60%应力下材料失效的圈数分别是12 833、50 370、101 652。材料疲劳加载下刚度降解和挠度变化趋势相似,材料弯曲疲劳极限为50%,材料σ-N曲线呈三段式,材料低应力水平下疲劳寿命离散性高于高应力水平。  相似文献   

3.
为研究室温下复合材料胶接修补结构的疲劳性能,以三维渐进损伤理论为基础,创建了复合材料胶接修补模型,利用材料损伤判断子程序实现对修补结构的静拉伸失效载荷及剩余强度的预测分析,并进行了相关试验的对比分析。采用5种不同尺寸的圆形补片来评价修补效果,并利用超景深仪对修补试件的疲劳损伤扩展模式进行微观测量。结果表明:静载拉伸中,尺寸为3.5r的修补结构承载能力最好;疲劳循环中,尺寸为2.5r的修补结构剩余强度提升效果最好;疲劳载荷下,当循环次数较低时,修补结构的主要损伤为基体开裂,而随着循环次数的增大,主要损伤为纤维断裂。  相似文献   

4.
The influence of stress ratio on the tensile fatigue behavior of a unidirectional SiC-fiber/Si3N4-matrix composite was investigated at 1200°C. Tensile stress ratios of 0.1, 0.3, and 0.5 were examined. Fatigue testing was conducted in air, at a sinusoidal loading frequency of 10 Hz. For peak fatigue stresses below the proportional limit of the composite (approximately 195 MPa at 1200°C) specimens survived 5 × 106 cycles, independent of stress ratio. At peak stresses above the proportional limit, fatigue failures were observed; fatigue life decreased significantly as the stress ratio was lowered from 0.5 to 0.1. Creep appears to be the predominant damage mechanism which occurs during fatigue below the proportional limit. Both mechanical cycle-by-cycle fatigue damage and creep contribute to specimen failure at peak stresses above the proportional limit.  相似文献   

5.
It has been confirmed that polymer matrix composites possess viscoelastic behavior. This means that one could accelerate the fatigue testing by changing the stress amplitude, frequency, or temperature. This study is to investigate the accelerated fatigue properties, which are resulted from the viscoelastic behavior, of carbon/epoxy composites and to predict their fatigue life. For this purpose, a series of fatigue tests of unidirectional specimens are conducted at room temperature under different stress ratios and stress frequencies. A group of sigmoid S‐N curves, which are suitable for the whole fatigue life, and the corresponding parameters are developed for different cyclic loading conditions. A transformation method, which can transform a reference S‐N curve to the corresponding S‐N curve of the assigned fatigue conditions, is established by the parameters. And this S‐N curve can be utilized to predict the fatigue life of the composite at the assigned stress ratio or stress frequency. The comparison between the linear and sigmoid S‐N curves is also carried out to show the advantages of the latter model in the whole fatigue life. POLYM. COMPOS., 27:138–146, 2006. © 2006 Society of Plastics Engineers  相似文献   

6.
The influence of cyclic loading frequency on the tensile fatigue life of a woven-carbon-fiber/SiC-matrix composite was examined at room temperature. Tension-tension fatigue experiments were conducted under load control, at sinusoidal frequencies of 1, 10, and 50 Hz. Using a stress ratio (σminmax) of 0.1, specimens were subjected to maximum fatigue stresses of 310 to 405 MPa. There were two key findings: (1) the fatigue life and extent of modulus decay were influenced by loading frequency and (2) the postfatigue monotonic tensile strength increased after fatigue loading. For loading frequencies of 1 and 10 Hz, the fatigue limit (defined at 1 × 106 cycles) was approximately 335 MPa, which is over 80% of the initial monotonic strength of the composite; at 50 Hz, the fatigue limit was below 310 MPa. During 1- and 10-Hz fatigue at a maximum stress of 335 MPa, the modulus exhibited an initially rapid decrease, followed by a partial recovery; at 50 Hz, and the same stress limits, the modulus continually decayed. The residual strength of the composite increased by approximately 20% after 1 × 106 fatigue cycles at 1 or 10 Hz under a peak stress of 335 MPa. The increase in strength is attributed in part to a decrease in the stress concentrations present near the crossover points of the 0° and 90° fiber bundles.  相似文献   

7.
使用三维绘图软件PRO/E 5.0绘制出三维角联锁机织复合材料结构模型,借助有限元软件ANSYS Workbench对该结构模型的弯曲疲劳性能进行分析。在复合材料弯曲静力学分析的基础上,添加疲劳工具对复合材料的抗疲劳性能进行分析,通过复合材料纤维、树脂各自的寿命、损伤分布云图分析复合材料的抗疲劳性能。结果表明:弯曲载荷作用下,复合材料与弯曲压头接触的位置表现出更大的弯曲应力;这些位置在较小循环载荷作用下较早发生破坏;与测试方向平行的纬纱较经纱发生更严重的破坏。  相似文献   

8.
With plastics being increasingly applied to moving parts today, predictions of continuous fatigue life under identical conditions (ambient temperature, frequency and load stress) are not sufficient. Rather, there is an urgent need to develop a method of predicting fatigue life under multi-stage loading involving intermittently changing conditions. In this study, by applying a temperature- and frequency-superposition method to fatigue life prediction of plastics, it was found that an exponential type of cumulative damage law could be applied to a two-stage fatigue process. Specifically, when fatigue conditions (interval time, ambient temperature, frequency and load stress) are changed between several stages, the resulting damage behavior follows an exponential law representing the ratio of the number of cycles in each stage to the continuous fatigue life under those conditions. It is shown here that the exponent m has a single value and consists of the product of the independent functions of the factors of the fatigue conditions. It is also shown that the use of this exponential law reproduces very well the damage behavior in a two-stage fatigue test in which each fatigue condition is changed and in three- and four-stage fatigue tests in which the interval time is varied.  相似文献   

9.
A study of filament‐wound glass fiber/epoxy composite tubes under biaxial fatigue loading is presented. The focus is placed on fatigue lives of tubular specimens under tension/torsion biaxial loading at low cycle up to 100,000 cycles. Filament‐wound glass‐fiber/epoxy tubular specimens with three different lay‐up configurations, namely [±35°]n, [±55°]n, and [±70°]n lay‐ups, are subjected to in‐phase proportional biaxial cyclic loading conditions. The effects of winding angle and biaxiality ratio on the multiaxial fatigue performance of composites are discussed. Specimens are also tested under two cyclic stress ratio: R = 0 and R = −1. The experimental results reveal that both tensile and compressive loading have an influence on the multiaxial fatigue strength, especially for [±35°]n specimens. A damage model proposed in the literature is applied to predict multiaxial fatigue life of filament‐wound composites and the predictions are compared with the experimental results. It is shown that the model is unsuitable for describing the multiaxial fatigue life under different cyclic stress ratios. POLYM. COMPOS. 28:116–123, 2007. © 2007 Society of Plastics Engineers  相似文献   

10.
In this study, a random forest machine-learning method is introduced on the basis of the analysis of measured constant amplitude stress fatigue data. This method aims to predict rubber fatigue life under constant amplitude stress. Strain mean value, strain amplitude, and strain ratio are used as independent variables, and the prediction model of rubber fatigue life under constant amplitude stress is established. A nonlinear cumulative fatigue damage model is proposed to calculate rubber fatigue life under the variable amplitude stress. Results show that the random forest method has high precision and generalization capability for rubber fatigue life prediction under constant amplitude stress and the nonlinear cumulative fatigue damage model could be employed to calculate the fatigue life of rubber under variable amplitude stress with enough accuracy according to the constant amplitude stress fatigue life data. This research can provide a reference for rubber fatigue life prediction. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48519.  相似文献   

11.
The influence of fatigue loading history and microstructural damage on the magnitude of frictional heating and interfacial shear stress in a unidirectional SiC fiber/calcium aluminosilicate matrix composite was investigated. The extent of frictional heating was found to depend upon loading frequency, stress range, and average matrix crack spacing. The temperature rise attained during fatigue can be significant. For example, the temperature rise exceeded 100 K during fatigue at 75 Hz between stress limits of 220 and 10 MPa. Analysis of the frictional heating data indicates that the interfacial shear stress undergoes an initially rapid decrease during the initial stages of fatigue loading: from an initial value over 20 MPa, to approximately 5 MPa after 25 000 cycles. Over the range of 5 to 25 Hz, the interfacial shear stress was not significantly influenced by loading frequency. The implications of frictional heating in fiber-reinforced ceramics are also discussed.  相似文献   

12.
13.
《Ceramics International》2022,48(5):6574-6590
Results from fatigue experiments done on a SiC/SiC composite are presented. A micromechanics-based model is used to study the observed behavior under cyclic loading. The model includes consideration of progressive damage, creep and oxidation of the fiber and matrix. Comparison of model predictions with test data showed that the deformation during fatigue in this material is explained primarily by damage in the form of matrix microcracking and interface debonding, in combination with creep under the cyclic load. Stiffness of the material was observed to not change significantly during fatigue indicating that the contribution of fiber fracture to deformation is limited. Fiber fracture however was found to determine final failure of the composite. Failure under cyclic fatigue loading was found to be affected by load transfer from the matrix to the fiber due to damage and creep, and by progressive degradation of the load-carrying fibers due to the combined effect of oxidation and load cycling.  相似文献   

14.
Ceramic materials are potentially useful for dental applications because of their esthetic potential and biocompatibility. However, evidence of contact fatigue damage in ceramics raises considerable concern regarding its effect on the survival probability predicted for dental prostheses. To simulate intraoral conditions, Hertzian indentation loading with steel indenters was applied in this study to characterize the fatigue failure mechanisms of ceramic materials. Baria silicate glasses and glass-ceramics with different aspect ratios of crystals were selected because the glass and crystal phases have similar density, elastic modulus, and thermal expansion coefficients. Therefore, this system is a model ceramic for studying the effect of crystal geometry on contact cyclic fatigue failure. The subsequent flexural strength results show that the failure of materials with a low fracture toughness such as baria-silicate glass (0.7 MPa m1/2) and glass-ceramic with an aspect ratio of 3.6/1 (1.3 MPa m1/2) initiated from cone cracks developed during cyclic loading for 103 to 105 cycles. The mean strengths of baria-silicate glass and glass-ceramics with an aspect ratio of 3.6/1 decreased significantly as a result of the presence of a cone crack. Failures of baria-silicate glass-ceramics with an aspect ratio of 8.1/1 (Kc = 2.1 MPa m1/2) were initiated from surface flaws caused by either grinding or cyclic loading. The gradual decrease of fracture stress was observed in specimens with an aspect ratio of 8.1/1 after loading in air for 103 to 105 cycles. A reduction of approximately 50 % in fracture stress levels was found for specimens with an aspect ratio of 8.1/1 after loading for 105 cycles in deionized water. Thus, even though this glass-ceramic with an 8.1/1 crystal aspect ratio material is tougher than that with a 3.6/1 crystal aspect ratio, the fatigue damage induced by a large number of cycles is comparable. The mechanisms for cyclic fatigue crack propagation in baria-silicate glass-ceramics are similar to those observed under quasi-static loading conditions. An intergranular fracture path was observed in glass-ceramics with an aspect ratio of 3.6/1. For an aspect ratio of 8.1/1, a transgranular fracture mode was dominant.  相似文献   

15.
Unidirectional and cross-ply Nicalon fiber-reinforced calcium aluminosilicate (CAS) glass-ceramic composite specimens were subjected to tension–tension cyclic fatigue and static fatigue loadings. Microcrack densities, longitudinal Young's modulus, and major Poisson's ratio were measured at regular intervals of load cycles and load time. The matrix crack (0° plies) density and transverse crack (90° plies) density increased gradually with fatigue cycles and load time. The crack growth is environmentally driven and depends on the maximum load and time. Young's modulus and Poisson's ratio decreased gradually with fatigue cycles and load time. The saturation crack densities under fatigue loadings were found to be comparable to those under monotonic loading. A matrix crack growth limit strain exists, below which matrix cracks do not grow significantly under fatigue loading. This limit coincides with the matrix crack initiation strain. Linear correlations between crack density and moduli reductions obtained from quasi-static data can predict the moduli reductions under cyclic loading, using experimentally measured crack densities. A logarithmic correlation can predict the Young's modulus reduction in a limited stress range. A fatigue crack growth model is proposed to explain the presence of two distinct regimes of crack growth and Young's modulus reduction.  相似文献   

16.
Adhesively bonded joints have been used extensively for many structural applications. However, one disadvantage usually limiting the service life of adhesive joints is the relatively low strength for peel loading, especially under dynamic cyclic loading such as impulsive or vibrational forces. Moreover, accurately predicting the fatigue life of bonded joints is still quite challenging. In this study, a combined experimental–numerical approach was developed to characterize the effect of the cyclic-vibration-peel (CVP) loading on adhesively bonded joints. A damage factor is introduced into the traction-separation response of the cohesive zone model (CZM) and a finite element damage model is developed to evaluate the degradation process in the adhesive layer. With this model, the adhesive layer stress states before and after being exposed to various CVP loading cycles are investigated, which reveals that the fatigue effect of the CVP loading starts first in the regions close to the edges of the adhesive layer. A good correlation is achieved when comparing the simulation results to the experimental data, which verifies the feasibility of using the proposed model to predict the fatigue life of adhesively bonded joints under the CVP type of loading.  相似文献   

17.
研究了 (± 20° )钢丝帘线 /橡胶复合材料在单级和两级拉伸循环载荷下疲劳损伤的累积规律。结果表明:在载荷控制的疲劳过程中,材料的周期最大应变发展曲线呈现明显的三阶段规律;疲劳寿命与最大应力近似呈对数线性关系。各级载荷下,周期最大应变发展曲线都具有线性稳定增长的第二阶段。两级加载实验初步证明 Palmgren- Minner法则仅适用于第一级疲劳条件比第二级疲劳条件轻缓的情况。  相似文献   

18.
Thermal energy storage (TES) materials constituted by a microencapsulated paraffin having a melting temperature of 6°C and a thermoplastic polyurethane (TPU) matrix were prepared through fused deposition modeling. Scanning electron microscope (SEM) micrographs demonstrated that the microcapsules were homogeneously distributed within the matrix, with a rather good adhesion within the layers of 3D printed specimens, even at elevated concentrations of microcapsules. The presence of paraffin capsules having a rigid polymer shell lead to a stiffness increase, associated to a decrease in the stress and in the strain at break. Tensile and compressive low-cycles fatigue tests showed that the presence of microcapsules negatively affected the fatigue resistance of the samples, and that the main part of the damage occurred in the first fatigue cycles. After the first 10 loading cycles at 50% of the stress at break, a decrease in the elastic modulus ranging from 60% for neat TPU to 80% for composite materials was detected. This decrease reached 40% of the original value at 90% of the stress at break after 10 cycles. Differential scanning calorimetry tests on specimens after fatigue loading highlighted a substantial retention of the original TES capability, in the range of 80%–90% of the pristine value, even after 1000 cycles, indicating that the integrity of the capsules was maintained and that the propagation of damage during fatigue tests took probably place within the surrounding polymer matrix. It could be therefore concluded that it is possible to apply the developed blends in applications where the materials are subjected to cyclic stresses, both in tensile and compressive mode.  相似文献   

19.
Summary Glass/Epoxy and Carbon/Epoxy unidirectional composite materials have been subjected to cyclic ondulated loading of three points bending specimens. The viscoelastic properties of the new or damaged materials are recorded with a Polymer laboratories PL/DMTA viscoelasticimeter working at 10 Hz. The viscoelastic behavior of samples subjected to various dynamic shear strains has also been investigated with a computer driven Metravib viscoanalyser.The results show that under fatigue stresses, glass/epoxy interface has permanent damage leading to large damping while carbon/epoxy one seems to have only intermittent damage leading to lower damping and better fatigue properties.  相似文献   

20.
纤维增强复合材料(FRP)因其轻质高强、耐腐蚀等突出优势受到广泛的关注,但其疲劳性能受材料特性、环境条件和载荷条件影响较大。基于唯象学刚度退化理论,研究了FRP材料的疲劳性能在不同温度和应力水平下的变化规律,推导了FRP材料基于温度变化的刚度退化和疲劳寿命预测等效模型,并在已有试验数据基础上对该模型进行了验证,并将之应用于E型玻璃纤维平纹编织层状材料的疲劳性能预测。结果表明:该模型能有效预测FRP材料的刚度退化规律和等效剩余疲劳寿命;FRP材料疲劳性能的温度效应明显,其影响程度甚至可能超过应力幅的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号