首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, polystyrene (PS)/montmorillonite nanocomposites were prepared by melt intercalation, in situ polymerization, and masterbatch methods. In the masterbatch method, as the first step, a high clay content composite of PS–organoclay (masterbatch) was prepared by in situ polymerization, and then the prepared masterbatch was diluted to desired compositions with commercial PS in a twin‐screw extruder. The structure and mechanical properties of the nanocomposites were examined. X‐ray diffraction (XRD) analysis showed that the d‐spacing of the in situ formed nanocomposites increased from 32.9 Å for the organoclay powder to 36.3 and 36.8 Å respectively in nanocomposites containing 0.73 and 1.6 wt% organoclay, indicating intercalation. However, the d‐spacing of the other prepared materials remained nearly unchanged when compared with pure organoclay powder. Thus, at these low clay contents, in situ formed nanocomposites showed the best improvement in mechanical properties including tensile, impact strength, and Young's modulus. In situ polymerization method did not prove to be efficient at high clay loadings in terms of intercalation and mechanical properties. At high clay loadings, the effects of the three methods in promoting mechanical properties were not significantly different from each other. POLYM. COMPOS., 27:249–255, 2006. © 2006 Society of Plastics Engineers  相似文献   

2.
Polypropylene (PP)/clay nanocomposites were prepared by melt‐compounding PP with organomontmorillonite (OMT), using maleic anhydride grafted polypropylene (PP‐g‐MA) as the primary compatibilizer and N‐imidazol‐O‐(bicyclo pentaerythritol phosphate)‐O‐(ethyl methacrylate) phosphate (PEBI) as the cointercalating monomer. X‐ray diffraction patterns indicated that the larger interlayer spacing of OMT in PP was obtained due to the cointercalation monomer having a large steric volume and the d‐spacing further increased with the addition of PP‐g‐MA, as evidenced by transmission electron microscopy. Thermogravimetric analysis revealed that the PEBI‐containing PP nanocomposites exhibited better thermal stability than PEBI‐free PP composites. Dynamic mechanical analysis demonstrated that the storage modulus was significantly enhanced, and the glass transition temperature (Tg) shifted slightly to low temperature with the incorporation of clay for PP/OMT hybrids. PEBI‐containing PP/OMT composites gave a lower Tg value because of the strong internal plasticization effect of PEBI in the system. Cone calorimetry showed that the flame‐retardancy properties of PP nanocomposites were highly improved with the incorporation of PEBI. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Nanocomposite polyurethane (PU)–organoclay materials have been synthesized via in‐situ polymerization. The organoclay is first prepared by intercalation of tyramine into montmorillonite (MMT)‐clay through ion exchange process. The syntheses of polyurethane–organoclay hybrid films containing different ratios of clay were carried out by swelling the organoclay into diol and diamine followed by addition of diisocyanate and then cured. The nanocomposites with dispersed and exfoliated structure of MMT were obtained as evidenced by X‐ray diffraction and scanning electron microscope. X‐ray diffraction showed that there is no peak corresponding to d001 spacing in organoclay with the ratios up to 20 wt%. SEM images confirmed the dispersion of nanometer silicate layers in the polyurethane matrix. Also, it was found that the presence of organoclay leads to improvement in the mechanical properties. The tensile strength was increased with increasing the organoclay contents to 20 wt% by 221% in comparision to the PU with 0% organoclay. POLYM. COMPOS. 28:108–115, 2007. © 2007 Society of Plastics Engineers  相似文献   

4.
Poly(butylene succinate) (PBS)/(ethylene acrylic acid) (EAA)/organoclay nanocomposites were prepared by using the melt intercalation technique. EAA was used as compatibilizer and organoclay was used as inorganic filler. X‐ray diffraction and transmission electron microscopy results indicated the addition of compatibilizer led to a large increase in basal spacing of nanocomposites and better overall dispersion of organoclay in the PBS matrix. However, the basal spacing was found to be invariant as the organoclay content increased. The differential scanning calorimetry analyses revealed that the incorporation of the organoclay and EAA and the variation of organoclay content altered the melting behavior and crystallization properties of PBS. Storage and loss modulus of virgin matrix increased with the incorporation of organoclay and EAA, and a maximum for the nanocomposite with 9 wt% organoclay. Moreover, the glass transition temperatures also increased for the various organoclay‐containing samples. Mechanical properties showed an increase with the incorporation of organoclay and EAA. The 5 wt% organoclay‐filled PBS gave the highest tensile strength and notched Izod impact strength among all the composites. Further increments in organoclay loading reduced the tensile strength and notched impact strength of nanocomposites, which was thought to be the result of agglomeration. However, increments in clay loading enhanced the flexural strength and flexural modulus of nanocomposites, with a maximum at 9 wt% organoclay. J. VINYL ADDIT. TECHNOL., 23:219–227, 2017. © 2015 Society of Plastics Engineers  相似文献   

5.
The effects of organoclay type, compatibilizer, and the addition order of components during melt‐blending process on the morphology and thermal, mechanical, and flow properties of ternary nanocomposites based on low‐density polyethylene (LDPE) were investigated. As a compatibilizer, ethylene/methyl acrylate/glycidyl methacrylate (E‐MA‐GMA), as organoclays Cloisites® 15A, 25A, and 30B were used. All samples were prepared by a corotating twin screw extruder, followed by injection molding. The highest increase of the basal spacing for ternary nanocomposites was obtained in LDPE/E‐MA‐GMA/Cloisite® 30B nanocomposites with interlayer spacing of 59.2 Å. Organoclay and compatibilizer addition did not influence the melting/crystallization behavior of the compositions, and both compatibilizer and organoclays had no significant nucleation activity in LDPE. Among the ternary nanocomposites, the maximum increase in tensile strength and tensile modulus values was observed for nanocomposites containing organoclay Cloisite® 15A. The improvement with respect to neat LDPE was 43% for tensile strength and 44% for tensile modulus. According to the mechanical analysis, the best sequence of component addition was the one in which LDPE, organoclay, and compatibilizer were simultaneously fed to the extruder in the first run, and the product of the first run was extruded once more. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The effects of melt state compounding of ethylene‐butyl acrylate‐maleic anhydride (E‐BA‐MAH) terpolymer and/or three types of organoclays (Cloisite® 15A, 25A, and 30B) on thermal and mechanical properties and morphology of polyamide‐6 are investigated. E‐BA‐MAH formed spherical domains in the materials to which it is added, and increased the impact strength, whereas the organoclays decreased the impact strength. In general, the organoclays increased the tensile strength (except for Cloisite 15A), Young's modulus and elongation at break, but the addition of E‐BA‐MAH had the opposite effect. XRD patterns showed that the interlayer spacing for the organoclays Cloisite 25A and Cloisite 30B increased in both polyamide‐6/organoclay binary nanocomposites and in polyamide‐6/organoclay/impact modifier ternary systems. TEM analysis showed that exfoliated‐intercalated nanocomposites were formed. The crystallinities of polyamide‐6/organoclay nanocomposites were in general lower than that of polyamide‐6 (except for Cloisite 15A). In ternary nanocomposites, crystallinities generally were lower than those of polyamide‐6/organoclay nanocomposites. Cloisite 15A containing ternary nanocomposites had higher tensile and impact strengths and Young's modulus than the ternary nanocomposites prepared with Cloisite 25A and Cloisite 30B, owing to its surface hydrophobicity and compatibility with the impact modifier. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers  相似文献   

7.
Purification of montmorillonite rich bentonite followed by surface modification using organic salts was performed. The bentonite was purified by sedimentation and then surface modified by ion exchange using alkyl‐ and aryl‐based phosphonium salts. The thermal stability, morphology, melt flow, and mechanical properties of the poly(ethylene terephthalate) (PET) nanocomposites prepared with these organoclays were studied with and without using a reactive elastomeric compatibilizer. TEM results showed that the alkyl based organoclay exhibited better dispersion and thus, higher tensile strength and elongation at break in the PET/organoclay/elastomer ternary nanocomposites than the aryl‐based organoclay did. The notched Charpy impact strength of PET increased from 2.9 to 4.7 kJ m?2 and 3.4 kJ m?2 for alkyl and aryl phosphonium organoclay‐based ternary nanocomposites, respectively. Upon compounding PET with alkyl and aryl phosphonium organoclays, the onset decomposition temperature of PET increased from 413°C to 420°C and 424°C, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
This study deals with the generation of poly(ethylene terephthalate)/organoclay nanocomposite filaments by the melt‐spinning method and with the investigation of their morphological and dyeing properties. Different montmorillonite types of clay (Resadiye and Rockwood) were modified using different intercalating agents, and poly(ethylene terephthalate) nanocomposite filaments containing 0.5 and 1 wt% organoclays were prepared. Afterwards, the filaments were dyed with two disperse dyes (Setapers Red P2G and Setapers Blue TFBL‐NEW) at different temperatures (100, 110, and 120 °C) in the absence/presence of a carrier. Organoclays and poly(ethylene terephthalate)/organoclay nanocomposites showed an increased d‐spacing between clay layers. Irrespective of clay and surfactant type, poly(ethylene terephthalate)/organoclay nanocomposite filaments dyed at 120 °C in the presence of only a very small amount of carrier showed appreciable dyeability in comparison with neat poly(ethylene terephthalate). The dyeability of the organoclay‐containing poly(ethylene terephthalate) samples was found to be better in spite of having increased degrees of crystallinity. Moreover, the colour fastness properties of the clay‐containing samples were not affected adversely.  相似文献   

9.
2,7‐Bis(4‐aminophenoxy) naphthalene (BAPN), a naphthalene‐containing diamine, was synthesized and polymerized with a 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) to obtain a polyimide (PI) via thermal imidization. To enhance the thermal and mechanical properties of the polymer, PI–Montmorillonite (MMT) nanocomposites were prepared from a DMAc solution of poly(amic acid) and a DMAc dispersion of MMT, which were organo‐modified with various amounts of n‐dodecylamine (DOA) or cetylpyridium chloride (CPC). FTIR, XRD, and TEM (transmission electron microscopy) were used to verify the incorporation of the modifying agents into the clay structure and the intercalation of the organoclay into the PI matrix. Results demonstrated that the introduction of a small amount of MMT (up to 5%) led to the improvement in thermal stability and mechanical properties of PI. The decomposition temperature of 5% weight loss (Td,5%) in N2 was increased by 46 and 36°C in comparison with pristine PI for the organoclay content of 5% with DOA and CPC, respectively. The nanocomposites were simultaneously strengthened and toughened. The dielectric constant, CTE, and water absorption were decreased. However, at higher organoclay contents (5–10%), these properties were reduced because the organoclay was poorly dispersed and resulted in aggregate formation. The effects of different organo‐modifiers on the properties of PI–MMT nanocomposite were also studied; the results showed that DOA was comparable with CPC. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

10.
This study analyzes the effect of different screw rotating speeds on the clay dispersion and mechanical properties of nanocomposites prepared by melt compounding polylactic acid (PLA) with an organoclay in a co‐rotating twin screw extruder. Polyamide 12 (PA12) was used as an additive. Two different screw rotating speeds, 65 rpm and 150 rpm, were used in this study. According to the tensile strength data, the Young's modulus of the PLA/clay nanocomposites showed improvement at a screw rotating speed of 150 rpm. The Young's modulus improved with the addition of the organoclay to PLA matrix, but decreased when PA12 was added to the PLA matrix. The tensile strengths and elongations become small by adding organoclay to PLA matrix. The tensile strengths of the PLA/organoclay nanocomposites increased for the higher screw rotating speed (150 rpm). The d‐spacing of PLA/PA12/Clay nanocomposites was independent of the addition of PA12. The size of the clay aggregates in the PLA/PA12/Clay nanocomposites is smaller than that of PLA/Clay. Furthermore, the thermal stability of the PLA/Clay nanocomposite increases with addition of PA12, while on the whole, it had little influence on the tensile properties. POLYM. COMPOS., 29:1–8, 2008. © 2007 Society of Plastics Engineers  相似文献   

11.
In this article, we report the influence of organic modifier structure (alkyl chain length C8-C20, single vs ditallow) and thereby, the effect of hydrophobicity on the structure, thermal and mechanical properties of poly(methyl methacrylate) (PMMA)-clay hybrids. Melt processed PMMA-clay hybrids were characterized using wide-angle X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. The organoclays having an alkyl chain length of more than 12 CH2 groups resulted in the formation of nanocomposites. The glass transition temperature (Tg) of PMMA increased in the presence of clay. The mean-field lattice model was used to predict the free energy for nanocomposite formation, which showed a reasonable match with the experimental results and provided a general guideline for the proper selection of polymer and organoclay (ie, organic modifier) to obtain nanocomposite. Tensile modulus showed maximum improvement of 58% for the nanocomposites compared to 9% improvement for the composites. Tensile modulus increased with increases in the alkyl chain length of the organic modifier and clay loading. The level of improvement for the tensile properties of nanocomposites prepared from primary and secondary ammonium-modified clay is the same as that obtained with the commercial organoclays.  相似文献   

12.
The effect of three types of organoclays on the morphology and mechanical properties of lower critical solution temperature‐type poly(acrylonitrile‐butadiene‐styrene)/poly(methyl methacrylate) (ABS/PMMA) blends was investigated. Polymers were melt‐compounded with 2 and 4 wt % of clays using a twin‐screw extruder. X‐ray scattering and transmission electron microscopy revealed that the intercalation of the nanoclay in the hybrid nanocomposite was more affected by the polarity of the organoclay. Although the morphology of the blends varied by PMMA content, scanning electron microscopy showed smaller PMMA domains for the hybrid systems containing clay particles. Although good dispersion of the nanoclay through the ABS matrix and at the blend interface led to enhancement of tensile strength, the increment of the stiffness was more noticeable for nanocomposites including less polar organoclay. Well‐dispersed clay platelets increased the glass transition temperature. In addition, nanoscratching analysis illustrated an improvement in scratch resistance of ABS because of the presence of PMMA and organoclay. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Ethylene copolymers with different polar comonomers, such as vinyl acetate, methyl acrylate, glycidyl methacrylate, and maleic anhydride, were used for the preparation of polymer/clay nanocomposites by statically annealing their mechanical mixtures with different commercial or home-made organically modified montmorillonites containing only one long alkyl tail. The nanostructure of the products was monitored by X-ray diffraction, and the dispersion of the silicate particles within the polymer matrix was qualitatively evaluated through microscopic analyses. The effect of the preparation conditions on the structure and the morphology of the composites was also addressed through the characterization of selected samples with similar composition prepared by melt compounding. In agreement with the findings reported in a previous paper for the composites filled with two-tailed organoclays, intercalation of the copolymer chains within the tighter galleries of the one-tailed clays occurs easily, independent of the application of a mechanical stress. However, the shear-driven break-up of the intercalated clay particles into smaller platelets (exfoliation) seems more hindered. A collapse of the organoclay interlayer spacing was only observed clearly for a commercial one-tailed organoclay – Cloisite® 30B – whereas the same effect was almost negligible for a home-made organoclay with similar structure.  相似文献   

14.
Various (low‐density polyethylene)/poly(ethylene‐co‐vinyl acetate) (LDPE/EVA) nanocomposites containing organoclay were prepared by one‐ and two‐step procedures through melt blending. The resultant nanocomposites were then processed via the film blowing method. From the morphological point of view, X‐ray diffraction and optical microscopy studies revealed that although a prevalent intercalated morphology was evident in the absence of EVA, a remarkable increase of organoclay interlayer spacing occurred in the EVA‐containing systems. The advantages of the addition of EVA to the LDPE/organoclay nanocomposites were confirmed in terms of oxygen barrier properties. In other words, the oxygen transmission rates of the LDPE/EVA/organoclay systems were significantly lower than that of the LDPE/organoclay sample. The LDPE/EVA/organoclay films had better mechanical properties than their counterparts lacking the EVA, a result which could be attributed to the improvement of the organoclay reinforcement efficiency in the presence of EVA. Differential scanning calorimetry and thermogravimetric analysis experiments were performed to follow the effects of the EVA and/or organoclay on the thermal properties of LDPE. Finally, the films produced from the two‐step‐procedure compound showed enhanced oxygen barrier properties and mechanical behavior as compared to the properties of the films produced via the one‐step procedure. J. VINYL ADDIT. TECHNOL., 19:132–139, 2013. © 2013 Society of Plastics Engineers  相似文献   

15.
Layered‐silicate‐based polymer–clay nanocomposite materials were prepared depending on the surface modification of montmorillonite (MMT). Nanocomposites consisting of poly(butylene terephthalate) (PBT) as a matrix and dispersed inorganic clay modified with cetyl pyridinium chloride (CPC), benzyl dimethyl N‐hexadecyl ammonium chloride, and hexadecyl trimethyl ammonium bromide by direct melt intercalation were studied. The organoclay loading was varied from 1 to 5 wt %. The organoclays were characterized with X‐ray diffraction (XRD) to compute the crystallographic spacing and with thermogravimetric analysis to study the thermal stability. Detailed investigations of the mechanical and thermal properties as well as a dispersion study by XRD of the PBT/clay nanocomposites were conducted. X‐ray scattering showed that the layers of organoclay were intercalated with intercalating agents. According to the results of a differential scanning calorimetry analysis, clay acted as a nucleating agent, affecting the crystallization. The PBT nanocomposites containing clay treated with CPC showed good mechanical properties because of intercalation into the polymer matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
A covalently functionalized organoclay was synthesized successfully through a condensation reaction of SiOH groups on the edge of montmorillonite (MMT) with acryloyl chloride followed by modification with hexadecyltrimethylammonium bromide (CTAB) via an ion‐exchange reaction. Fourier transform infrared confirmed that C?C groups had been grafted to MMT sheets. Wide‐angle X‐ray diffraction measurements showed that CTAB had intercalated into MMT interlayers. The content of bonded acryloyl chloride was 2.42 wt % in the functionalized organoclay according to thermogravimetric analysis. Polypropylene (PP) nanocomposites were prepared by melt mixing. Rheological measurements and morphology observations confirmed that PP nanocomposites containing the organoclay bearing C?C groups exhibited improved interfacial interaction between PP chains and MMT sheets. Thus, the PP nanocomposites showed not only higher storage modulus and complex viscosity values at low frequencies but also enhanced mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Poly(lactic acid) (PLA)/organoclay nanocomposites were prepared by melt compounding in a co‐rotating twin screw extruder. Two types of commercialized organoclay (dimethyl benzyl stearyl ammonium ion and dimethyl distearyl ammonium ion intercalated between clay platelets named as Clay A and Clay B, respectively) and two grades of poly(ethylene glycol) (PEG) with different molecular weight (Mw = 2,000 and 300,000–500,000 named as PEG2k and PEG500k, respectively) were used in this study. The Young's modulus improved by the addition of organoclay to PLA matrix. The Young's modulus decreased with the addition of PEG to PLA/organoclay nanocomposites. The tensile strength and elongation of PLA/Clay B nanocomposites increased with the addition of PEG2k. The effect of the addition of PEG on d‐spacing of PLA/organoclay nanocomposites is dependent upon the kind of organoclay. The sizes of clay agglomerations in PLA/PEG/organoclay nanocomposites are larger than those of PLA/organoclay ones in the same organoclay. Addition of PEG to PLA/organoclay nanocomposites during melt compounding will not be useful for the preparation of PLA/organoclay having fully exfoliated clay platelets. The shear thinning properties of the nanocomposites are independent of the addition of PEG. On the whole, PEG2k is good plasticizer for PLA/organoclay nanocomposites. POLYM. COMPOS. 27:256–263, 2006. © 2006 Society of Plastics Engineers  相似文献   

18.
Linear, one‐binding‐site or two‐binding‐site (N+) organifiers with two hydroxyl end groups were synthesized, and novel organoclays were prepared through a cation‐exchange reaction between pristine sodium montmorillonite and the synthesized organifiers. After sonication of the as‐prepared organoclay in N,N′‐dimethylformamide for 10 min, the average size of the clay decreased to about 1 μm. The X‐ray diffraction patterns confirmed that the d‐spacing of the silicate layers of the organoclay expanded from 1.1 to about 1.9 nm and the peak intensity decreased with the molecular weight of the organifier increasing. Polyurethane/clay nanocomposites were synthesized by a one‐shot polymerization method. Both intercalated and exfoliated structures of the layered silicates in the polyurethane matrix were observed from transmission electron microscopy micrographs, and the d‐spacing ranged from 4 to 10 nm. The thermal and mechanical properties of the nanocomposite were enhanced by the introduction of the organoclay into the polyurethane matrix. An approximately 40–46°C increase in the onset decomposition temperature, a 200% increase in the tensile strength with a 0.5 wt % clay loading, and a 49% increase in Young's modulus with a 3 wt % clay loading were achieved. The effects of the molecular weight and the number of binding sites of the organifier on the properties of the nanocomposites were also evaluated. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Polyaniline (PANI)–organoclay nanocomposites were prepared. Intercalation of aniline monomer into montmorillonite (MMT) modified by polyoxyalkylene was followed by subsequent oxidative polymerization of the aniline in the interlayer spacing. The organoclay was prepared by cation exchange process between sodium cation in MMT and onium ion in four different types of polyoxyalkylene diamine and triamine with different molecular weight. Infrared spectra confirm the electrostatic interaction between the positively charged onium group (NH3+) and the negatively charged surface of MMT. X‐ray diffraction analysis provides a structural information. The absence of d001 diffraction band in the nanocomposites was observed at certain types and contents of organoclay. Scanning electron microscopy and transmission electron microscopy were employed to determine the dispersion of the clay into PANI. The thermal degradation behavior of PANI in the nanocomposites has been investigated by thermogravimetric analysis. The weight loss suggests that the PANI chains in the nanocomposites are more thermally stable than pristine PANI. This improvement is attributed to the presence of nanolayers with high aspect ratio acting as barriers, thus shielding the diffusion of degraded PANI from the nanocomposites. The electrical conductivity of the nanocomposites was increased 30 times more than that of pure MMT at a certain concentration. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Surface modification of montomorillonite for improvement in d‐spacing was done by column chromatography with quaternary long chain ammonium salt having cation exchange capacity of 110 meq/100 g. Organically modified montomorillonite (OMMT)/poly(vinyl chloride) (PVC) nanocomposites were prepared through direct melt compounding on a conventional twin screw extruder. Because of improved d‐spacing of OMMT, the polymer chains get exfoliated in between the plates of clay and dispersed uniformly. The mechanical properties of the nanocomposites were found to be appreciable at 12 wt % loading of OMMT. Moreover, rheological data, such as torque, fusion time, viscosity, and shear rate were also recorded on Brabender Plasticorder. The improvement in mechanical properties with increase in amount of OMMT loading is evidenced from reduction in shear viscosity and torque. Also nanoclay is acting as a lubricating agent with packing effect, which reduces the torque with decrease in viscosity along with increment in elongation at break. Because of soft nature of OMMT and improvement in d‐spacing the processing of PVC becomes easier, and hence, OMMT is playing a dual role as a (i) good processing aid and (ii) filler. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号