首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper is focused on the basic study and optimization of short time (<10 min) Chemical Bath Deposition (CBD) of Zn(S,O,OH) buffer layers in co‐evaporated Cu(In,Ga)Se2 (CIGSe) and electrodeposited CuIn(S,Se)2 ((ED)‐CIS) solar cells for industrial applications. First, the influence of the deposition temperature is studied from theoretical solution chemistry considerations by constructing solubility diagrams of ZnS, ZnO, and Zn(OH)2 as a function of temperature. In order to reduce the deposition time under 10 min, experimental growth deposition studies are then carried out by the in situ quartz crystal microgravimetry (QCM) technique. An optimized process is performed and compared to the classical Zn(S,O,OH) deposition. The morphology and composition of Zn(S,O,OH) films are determined using SEM and XPS techniques. The optimized process is tested on electrodeposited‐CIS and co‐evaporated‐CIGSe absorbers and cells are completed with (Zn,Mg)O/ZnO:Al windows layers. Efficiencies similar or even better than CBD CdS/i‐ZnO reference buffer layers are obtained (15·7% for CIGSe and 8·1% for (ED)‐CIS). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A ZnS/Zn1‐xMgxO buffer combination was developed to replace the CdS/i‐ZnO layers in in‐line co‐evaporated Cu(In,Ga)Se2(CIGS)‐based solar cells. The ZnS was deposited by the chemical bath deposition (CBD) technique and the Zn1‐xMgxO layer by RF magnetron sputtering from ceramic targets. The [Mg]/([Mg] + [Zn]) ratio in the target was varied between x = 0·0 and 0·4. The composition, the crystal structure, and the optical properties of the resulting layers were analyzed. Small laboratory cells and 10 × 10 cm2 modules were realized with high reproducibility and enhanced stability. The transmission is improved in the wavelength region between 330 and 550 nm for the ZnS/Zn1‐xMgxO layers. Therefore, a large gain in the short‐circuit current density up to 12% was obtained, which resulted in higher conversion efficiencies up to 9% relative as compared to cells with the CdS/i‐ZnO buffer system. Peak efficiencies of 18% with small laboratory cells and 15·2% with 10 × 10 cm2 mini‐modules were demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The purpose of the present paper is to focus on the impact of oxygen gas partial pressure during the sputtering of i‐ZnO and ZnMgO on the transient behavior of Cu(In,Ga)Se2 (CIGSe) based solar cells parameters when a CBD‐Zn(S,O) buffer layer is used. Based on electrical characterization of cells, it is observed that the effect of light soaking is different on J–V characteristics depending on whether oxygen is or is not present during the first deposition time of the i‐ZnO or ZnMgO layers. In fact, when cells are prepared with standard i‐ZnO, the efficiencies are very low and a pronounced transient behavior is observed. However, when the first 10 nm of i‐ZnO or ZnMgO is formed by sputtered layer without adding oxygen during the process, depending on the thickness of the buffer layer, the transient effects strongly decreases. It is then possible to get stable cells reaching efficiencies quite similar to the CdS reference cells, especially with ZnMgO, without any post‐treatments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
(Cd,Zn)S buffer layer and Zn1−x Mgx O window layer were investigated to replace the traditional CdS buffer layer and ZnO window layer in Cu(In,Ga)(Se,S)2 (CIGSSe)‐based solar cell. (Cd,Zn)S with band‐gap energy (E g) of approximately 2.6 eV was prepared by chemical bath deposition, and Zn1−x Mgx O films with different [Mg]/([Mg] + [Zn]) ratios, x , were deposited by radio frequency magnetron co‐sputtering of ZnO and MgO. The estimated optical E g of Zn1−x Mgx O films is linearly enhanced from 3.3 eV for pure ZnO (x  = 0) to 4.1 eV for Zn0.6Mg0.4O (x  = 0.4). The quality of the Zn1−x Mgx O films, implied by Urbach energy, is severely deteriorated when x is above 0.211. Moreover, the temperature‐dependent current density‐voltage characteristics of the CIGSSe solar cells were conducted for the investigation of the heterointerface recombination mechanism. The external quantum efficiency of the CIGSSe solar cell with the (Cd,Zn)S buffer layer/Zn1−x Mgx O window layer is improved in the wavelength range of 320–520 nm. Therefore, a gain in short‐circuit current density up to about 5.7% was obtained, which is higher conversion efficiency of up to around 5.4% relative as compared with the solar cell with the traditional CdS buffer layer/ZnO window layer. The peak efficiency of 19.6% was demonstrated in CIGSSe solar cell with (Cd,Zn)S buffer layer and Zn1−x Mgx O window layer, where x is optimized at 0.211. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
The effects of the immersion into a NH3 aqueous solution on the structural characteristics of the chemically deposited Zn(S,O,OH) layer and photovoltaic performance of the CIGS/Zn(S,O,OH) solar cells were investigated with structural and electrical characterizations. The as‐deposited‐Zn(S,O,OH) layer possessed a layered structure of upper Zn(OH)2 and Zn(S,O) layers, and the upper Zn(OH)2 layer was removed by the immersion. The conversion efficiency for the CIGS solar cell was improved from 6.8% to 13.7% by removing the upper Zn(OH)2 layer during the immersion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Sputtering of Zn(O,S) from ZnO/ZnS compound targets has been proven to be a promising buffer layer process for Cd‐free CIGS modules due to easy in‐line integration, low cost and high efficiency on lab scale. In this publication, we report on successful upscaling of the lab process to pilot production. A record aperture efficiency of 13.2% has been reached on a 50 × 120 cm2 sized module. Neither a non‐doped ZnO layer nor additional annealing steps are required. Moreover, this very reproducible process yields a standard deviation comparable with that of the CdS base line. In contrast to lab experiments, strong performance gain after light soaking has been observed. The light‐soak‐induced power increase depends on the preparation of the window layer. Accelerated aging tests show high stability of module power. This is confirmed by outdoor testing for 20 months. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Fabrication of Zn1−xMgxO films by atomic layer deposition (ALD) has been studied for use as buffer layers in Cu(In,Ga)Se2 (CIGS)‐based solar cell devices. The Zn1−xMgxO films were grown using diethyl zinc, bis‐cyclopentadienyl magnesium and water as precursors in the temperature range from 105 to 180°C. Single‐phase ZnO‐like films were obtained for x < 0·2, followed by a two phase region of ZnO‐ and MgO‐like structures for higher Mg concentrations. Increasing optical band gaps of up to above 3·8 eV were obtained for Zn1−xMgxO with increasing x. It was found that the composition of the Zn1−xMgxO films varied as an effect of deposition temperature as well as by increasing the relative amount of magnesium precursor pulses during film growth. Completely Cd‐free CIGS‐based solar cells devices with ALD‐Zn1−xMgxO buffer layers were fabricated and showed efficiencies of up to 14·1%, which was higher than that of the CdS references. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Surface modifications of three‐stage co‐evaporated Cu(In,Ga)Se2 (CIGS) thin films are investigated by finishing the evaporation with gallium‐free (CuInSe2, CIS) stages of various lengths. Secondary‐ion mass spectrometry shows substantial interdiffusion of indium and gallium, smearing out the Ga/(Ga + In) profile so that the addition of a CIS layer merely lowers the gallium content at the surface. For the thinnest top layer, equivalent to 20 nm of pure CIS, X‐ray photoelectron spectroscopy does not detect any compositional difference compared with the reference device. The modifications are evaluated electrically both by temperature‐dependent characterisation of actual solar‐cell devices and by modelling, using the latest version of scaps‐1d (Electronics and Information Systems, Ghent University, Belgium). The best solar‐cell device from this series is obtained for the 20 nm top layer, with an efficiency of 16.6% after antireflective coating. However, we observe a trend of decreasing open‐circuit voltage for increasingly thick top layers, and we do not find direct evidence that the lowering of the gallium concentration at the CIGS surface should generally be expected to improve the device performance. A simulated device with reduced bulk and interface defect levels achieves nearly 20% efficiency, but the trends concerning the CIS top layer remain the same. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
In2S3 buffer layers have been prepared using the spray ion layer gas reaction deposition technique for chalcopyrite‐based thin‐film solar cells. These buffers deposited on commercially available Cu(In,Ga)(S,Se)2 absorbers have resulted in solar cells with certified record efficiencies of 16.1%, clearly higher than the corresponding CdS‐buffered references. The deposition process has been optimized, and the resulting cells have been studied using current–voltage and quantum efficiency analysis and compared with previous record cells, cells with a thermally evaporated In2S3 buffer layer and CdS references. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A surface treatment by evaporated selenium on Cu(In,Ga)Se2 (CIGS) is shown to improve open circuit voltage, Voc, and in some cases fill factor, FF, in solar cells with CdS, (Zn,Mg)O or Zn(O,S) buffer layers. Voc increases with increasing amount of crystalline Se, while FF improves only for small amounts. The improvements are counteracted by a decreasing short circuit current assigned to absorption in hexagonal Se. Improved efficiency is shown for device structures with (Zn,Mg)O and Zn(O,S) buffer layers by atomic layer deposition. Analysis by grazing incidence X‐ray diffraction and photoelectron spectroscopy show partial coverage of the CIGS surface by hexagonal selenium. The effects on device performance from replacing part of the CIGS/buffer interface area by a Se/buffer junction are discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The formation of the interface between In2S3 grown by atomic layer deposition (ALD) and co‐evaporated Cu(In,Ga)Se2 (CIGS) has been studied by X‐ray and UV photoelectron spectroscopy. The valence band offset at 160°C ALD substrate temperature was determined as −1·2±0·2 eV for CIGS deposited on soda‐lime glass substrates and −1·4±0·2 eV when a Na barrier substrate was used. Wavelength dependent complex refractive index of In2S3 grown directly on glass was determined from inversion of reflectance and transmittance spectra. From these data, an indirect optical bandgap of 2·08±0·05 eV was deduced, independent of film thickness, of substrate temperature and of Na content. CIGS solar cells with ALD In2S3 buffer layers were fabricated. Highest device efficiency of 12·1% was obtained at a substrate temperature of 120°C. Using the bandgap obtained for In2S3 on glass and a 1·15±0·05 eV bandgap determined for the bulk of the CIGS absorber, the conduction band offset at the buffer interface was estimated as −0·25±0·2 eV (−0·45±0·2 eV) for Na‐containing (Na‐free) CIGS. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Chemical bath deposited (CBD)Zn(S,O,OH) is among the alternatives to (CBD)CdS buffer layers in Cu(In,Ga)Se2(CIGSe)‐based devices. Nevertheless, the performances reached by devices buffered with (CBD)Zn(S,O,OH) vary strongly from one sample to another and from one laboratory to another, indicating that parameters of minority impact with (CBD)CdS‐buffered devices have major influence when buffered with (CBD)Zn(S,O,OH). Moreover, the literature reports, but not systematically, the requirement of substituting the standard resistive intrinsic ZnO by (Zn,Mg)O and/or soaking the devices in ultraviolet‐containing light in order to reach optimal device operation. The present study investigates the impact of the three following parameters on the optoelectronic behavior of the Cu(In,Ga)Se2/(CBD)Zn(S,O,OH)/i‐ZnO‐based solar cells: (i) CIGSe surface composition; (ii) (CBD)Zn(S,O,OH) layer thickness; and (iii) i‐ZnO layer resistivity. The first conclusion of this study is that all of these parameters are observed to influence the electrical metastabilities of the devices. The second conclusion is that the light soaking time needed to achieve optimal photovoltaic parameters is decreased by (i) using absorbers with Cu content close to stoichiometry, (ii) increasing the buffer layer thickness, and (iii) increasing the resistivity of i‐ZnO. By optimizing these trends, stable and highly efficient Zn(S,O,OH)‐buffered CIGSe solar cells have been fabricated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
在含有ZnSO4,SC(NH2)2,NH4OH的水溶液中采用CBD法沉积ZnS薄膜,XRF和热处理前后的XRD测试表明,ZnS沉积薄膜为立方相结构,薄膜含有非晶态的Zn(OH)2.光学透射谱测试表明,制备的薄膜透过率(λ>500nm)约为90%,薄膜的禁带宽度约为3.51eV.ZnS薄膜沉积时间对Cu(In,Ga)Se2太阳电池影响显著,当薄膜沉积时间在25~35min时,电池的综合性能最好.对比了不同缓冲层的电池性能,采用CBD-CdS为缓冲层的电池转换效率、填充因子、开路电压稍高于CBD-ZnS为缓冲层的无镉电池,但无镉电池的短路电流密度高于前者,两者转换效率相差2%左右.ZnS可以作为CIGS电池的缓冲层,替代CdS,实现电池的无镉化.  相似文献   

14.
In this paper, lightsoaking and temperature‐dependent current‐voltage (JVT) measurements on Cu(In,Ga)Se2 solar cells with atomic layer deposited Zn1‐xMgxO buffer layers are presented. A range of Mg concentrations are used, from pure ZnO (x=0) to 26% Mg (x=0·26). Since this kind of solar cells exhibit strong metastable behaviour, lightsoaking is needed prior to the JVT‐measurements to enable fitting of these to the one‐diode model. The most prominent effect of lightsoaking cells with Mg‐rich buffer layers is an increased fill factor, while the effect on cells with pure ZnO buffer is mainly to increase Voc·. The activation energy is extracted from JVT‐measurement data by applying three different methods and the ideality factors are fitted to two different models of temperature‐dependence. A buffer layer consisting either of ZnO or Zn1‐xMgxO with a minor Mg content gives solar cells dominated by interface recombination, which probably can be related to a negative conduction band offset. A relatively high Mg content in the buffer layer (x=0·21) leads to solar cells dominated by recombination in the space charge region. The recombination is interpreted as being tunnelling‐enhanced. The situation in between these Mg concentrations is less clear. Before lightsoaking, the sample with x=0·12 has the highest efficiency of 15·3%, while after lightsoaking the sample with x=0·21 holds the best efficiency, 16·1%, exceeding the value for the CdS reference. The Jsc values of the Zn1‐xMgxO cells surpass that of the reference due to the larger bandgap of Zn1‐xMgxO compared to CdS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The influence of the thickness of atomic layer deposited Zn1−xSnxOy buffer layers and the presence of an intrinsic ZnO layer on the performance of Cu(In,Ga)Se2 solar cells are investigated. The amorphous Zn1−xSnxOy layer, with a [Sn]/([Sn] + [Zn]) composition of approximately 0.18, forms a conformal and in‐depth uniform layer with an optical band gap of 3.3 eV. The short circuit current for cells with a Zn1−xSnxOy layer are found to be higher than the short circuit current for CdS buffer reference cells and thickness independent. On the contrary, both the open circuit voltage and the fill factor values obtained are lower than the references and are thickness dependent. A high conversion efficiency of 18.0%, which is comparable with CdS references, is attained for a cell with a Zn1−xSnxOy layer thickness of approximately 13 nm and with an i‐ZnO layer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Thin film solar cells based on polycrystalline Cu(In,Ga)Se2 were prepared by elemental co‐evaporation using modified three‐stage processes on soda lime glass substrates at a low substrate temperature of 450°C intended for application on polyimide foils. The growth rates in the different stages of the growth process were varied, and it was observed that the final composition profile and structural quality of the film are mainly determined by the growth rate in the third stage. Application of high growth rates in the second stage was found to have no significant impact on layer morphology and gallium grading profile, which was confirmed by scanning electron microscopy, secondary ion mass spectroscopy, and x‐ray diffraction measurements. On the other hand, scanning electron microscopy cross sections revealed that high growth rates in the third stage lead to a fine‐grained structure toward the surface as well as smaller grains toward the back contact. Secondary ion mass spectroscopy and x‐ray diffraction measurements of such layers revealed a pronounced gallium grading profile, while Raman spectroscopy showed strong occurrence of group III‐rich phases in the near‐surface region. The final device performance was found to deteriorate by about 10% relative to the baseline process efficiency when growth rates of up to 500 nm min−1 were applied in the second stage or 600 nm min−1 in the third stage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
18.
The electronic band alignment of the Zn(O,S)/Cu(In,Ga)Se2 interface in high‐efficiency thin‐film solar cells was derived using X‐ray photoelectron spectroscopy, ultra‐violet photoelectron spectroscopy, and inverse photoemission spectroscopy. Similar to the CdS/Cu(In,Ga)Se2 system, we find an essentially flat (small‐spike) conduction band alignment (here: a conduction band offset of (0.09 ± 0.20) eV), allowing for largely unimpeded electron transfer and forming a likely basis for the success of high‐efficiency Zn(O,S)‐based chalcopyrite devices. Furthermore, we find evidence for multiple bonding environments of Zn and O in the Zn(O,S) film, including ZnO, ZnS, Zn(OH)2, and possibly ZnSe. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
在含有ZnSO4,SC(NH2)2,NH4OH的水溶液中采用CBD法沉积ZnS薄膜,XRF和热处理前后的XRD测试表明,ZnS沉积薄膜为立方相结构,薄膜含有非晶态的Zn(OH)2.光学透射谱测试表明,制备的薄膜透过率(λ>500nm)约为90%,薄膜的禁带宽度约为3.51eV.ZnS薄膜沉积时间对Cu(In,Ga)Se2太阳电池影响显著,当薄膜沉积时间在25~35min时,电池的综合性能最好.对比了不同缓冲层的电池性能,采用CBD-CdS为缓冲层的电池转换效率、填充因子、开路电压稍高于CBD-ZnS为缓冲层的无镉电池,但无镉电池的短路电流密度高于前者,两者转换效率相差2%左右.ZnS可以作为CIGS电池的缓冲层,替代CdS,实现电池的无镉化.  相似文献   

20.
We report the development of Cd‐free buffers by atomic layer deposition for chalcopyrite‐based solar cells. Zn(O,S) buffer layers were prepared by atomic layer deposition on sequentially grown Cu(In,Ga)(Se,S)2 absorbers from Bosch Solar CISTech GmbH. An externally certified efficiency of 16.1% together with an open circuit voltage of 612 mV were achieved on laboratory scale devices. Stability tests show that the behavior of the ALD‐Zn(O,S)‐buffered devices can be characterized as stable only showing a minor drift of the open circuit voltage and the fill factor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号