首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2019,45(13):15942-15953
The development of highly efficient and multifunctional composite photocatalysts for both energy conversion and environmental governance has obtained great concerns. Here, a novel CdIn2S4/TiO2 (CIS/THS) hollow composite photocatalyst was firstly designed and synthesized via a facile in-situ growth process, where the CdIn2S4 nano-octahedra densely attached on the surface of TiO2 hollow spheres to form the unique hybrid heterostructure. The as-synthesized CIS/THS heterojunctions exhibit much superior photocatalytic activities for hydrogen evolution and Methyl Orange (MO) decomposition in comparison to pure CdIn2S4 and TiO2 hollow spheres. The experimental results display that the CIS/THS-3 sample with the 30 wt% of TiO2 presents the optimal photocatalytic H2 production efficiency and its generation rate is 3.38 and 2.56 times as high as those of pure TiO2 and CdIn2S4. Besides, the as-synthesized CIS/THS-3 hybrid also possesses the best MO photodegradation performance and its rate constant is 11.43 and 8.34 times higher than those of pure TiO2 and CdIn2S4. The enhanced photocatalytic activities can be assigned to the synergistic effect, optimized light-harvesting capacity and the formation of hybrid heterostructure for boosting interfacial charge transfer and separation. Furthermore, based on the trapping experiments and ESR analysis, the possible type-Ⅱ interface charge transport mechanism was also proposed. Our study may provide the direct guidance for constructing other hollow TiO2-based composite photocatalysts with superior photocatalytic water splitting and degradation performances.  相似文献   

2.
Photocatalytic green hydrogen (H2) production through water electrolysis is deemed as green, efficient, and renewable fuel or energy carrier due to its great energy density and zero greenhouse emissions. However, developing efficient and low-cost noble-metal-free photocatalysts remains one of the daunting challenges in low-cost H2 production. Porous graphitic carbon nitride (gCN) nanostructures have drawn broad multidisciplinary attention as metal-free photocatalysts in the arena of H2 production and other environmental remediation. This is due to their impressive catalytic/photocatalytic properties (i.e., high surface area, narrow bandgap, and visible light absorption), unique physicochemical durability, tunable electronic properties, and feasibility to synthesize in high yield from inexpensive and earth-abundant resources. The physicochemical and photocatalytic properties of porous gCNs can be easily optimized via the integration of earth-abundant heteroatoms. Although there are various reviews on porous gCN-based photocatalysts for various applications, to the best of our knowledge, there are no reviews on heteroatom-doped porous gCN nanostructures for the photocatalytic H2 evolution reaction (HER). It is essential to provide timely updates in this research area to highlight the research related to fabrication of novel gCNs for large-scale applications and address the current barriers in this field. This review emphasizes a panorama of recent advances in the rational design of heteroatom (i.e., P, O, S, N, and B)-doped porous gCN nanostructures including mono, binary, and ternary dopants for photocatalytic HERs and their optimized parameters. This is in addition to H2 energy storage, non-metal configuration, HER fundamental, mechanism, and calculations. This review is expected to inspire a new research entryway to the fabrication of porous gCN-based photocatalysts with ameliorated activity and durability for practical H2 production.  相似文献   

3.
The effect of the photodeposition of gold particles onto several photocatalysts on the photocatalytic activities was studied. The photocatalytic activities of K4Nb6O17, Sr2Nb2O7, KTaO3 NaTaO3, and NaTaO3 doped with La for water splitting were improved when gold particles were deposited. The latter were nanoparticles, consistent with their surface plasmon absorption. The nanosized gold particle functioned as an efficient cocatalyst for photocatalytic water splitting by assisting H2 evolution.  相似文献   

4.
Several new photocatalysts for overall water splitting are described. Under UV light irradiation (270 nm), La-doped NaTaO3 modified with NiO decomposed water into H2 and O2 with extremely high quantum efficiency. Under an optimized condition, the apparent quantum efficiency, which was estimated with numbers of irradiated photons and evolved H2 molecules, reached 56%. New stable photocatalytic materials containing elements with d10 electronic configuration such as In3+ Sn4+ and Sb5+ were developed for overall water splitting. Some mesoporous oxides were proved to be effective photocatalysts. (Oxy)nitrides of some early transition metals, i.e., Ta, Nb and Ti, were found to be stable materials having potentials for H2 and O2 evolutions under visible light irradiation (⪯600 nm). The electronic structures of these photocatalysts are also discussed based on DFT calculation.  相似文献   

5.
We present the micro-sized SiC powder applying to overall water splitting under visible light irradiation without adding any sacrificial compounds. The stoichiometric amounts of H2 and O2 in 2:1 were obtained when using WO3 nanoparticle and Pt-loaded micro-SiC grains as the O2 and H2 evolution photocatalysts, respectively. The relatively low efficiency step for splitting water reaction is the H+ reduction in the solution. Under optimal condition, the apparent quantum efficiency reaches up to 0.021% at 420 nm. Our results provide a method to enhance the photocatalytic activity of micro-sized SiC powder for overall water splitting using solar energy.  相似文献   

6.
A series of Pt-loaded MS/ZnIn2S4 (MS = transition-metal sulfide: Ag2S, SnS, CoS, CuS, NiS, and MnS) photocatalysts was investigated to show various photocatalytic activities depending on different transition-metal sulfides. Thereinto, CoS, NiS, or MnS-loading lowered down the photocatalytic activity of ZnIn2S4, while Ag2S, SnS, or CuS loading enhanced the photocatalytic activity. After loading 1.0 wt.% CuS together with 1.0 wt.% Pt on ZnIn2S4, the activity for H2 evolution was increased by up to 1.6 times, compared to the ZnIn2S4 only loaded with 1.0 wt.% Pt. Here, transition-metal sulfides such as CuS, together with Pt, acted as the dual co-catalysts for the improved photocatalytic performance. This study indicated that the application of transition-metal sulfides as effective co-catalysts opened up a new way to design and prepare high-efficiency and low-cost photocatalysts for solar-hydrogen conversion.  相似文献   

7.
Hydrogen Production Using Highly Active Titanium Oxide-based Photocatalysts   总被引:1,自引:0,他引:1  
Applying the principle of water decomposition over photoelectrochemical cells to heterogeneous photocatalytic systems using powdered semiconductors is now a field of great interest, encouraging new fundamental investigations into chemical reactions which take place at the electrode surfaces in the electrochemical cells. In the present review, we have focused on systems, which can convert solar energy into chemical energy by using TiO2 photocatalysts. The photocatalytic decomposition of water under UV light irradiation has been achieved with systems using various nanoparticle photocatalysts such as TiO2. However, recently, visible light-responsive TiO2 thin films photocatalysts have been successfully prepared by a radio frequency magnetron sputtering (RF-MS) deposition method. These thin film photocatalysts were found to have enough potential for the separate evolution of H2 and O2 from water under solar light. The TiO2 thin films were prepared on metal substrates by RF-MS deposition and mounted on H-type containers filled with water. This unique system enabled the separate evolution of H2 and O2 from water under sunlight irradiation, opening new opportunities for the practical on-site production of pure and clean H2 from water using abundant and clean sunlight in a safe, environmentally harmonious way.  相似文献   

8.
Several TiO2-based photocatalytic systems that have considerable visible light response have been developed, such as the photodegradation of organic pollutants on sensitized TiO2 by visible light, construction of visible-light-active novel TiO2 photocatalysts by matrix or surface modification. In this paper, we review briefly our recent progress in the TiO2 photocatalytic degradation of organic pollutants by visible light, some related work by other groups is also involved.  相似文献   

9.
A novel multi-gelation method to prepare TiO2 nano-particle photocatalysts showed good performance in controlling the important parameters determining the photocatalytic reactivity, i.e., the particle size, surface area, crystallinity, pore-volume, pore-diameter as well as the anatase and rutile phase composition of the catalysts. In particular, this method at higher pH swing times could prevent the phase transition from anatase to rutile, leading to higher photocatalytic activity. By adopting variations in the pH swing, the TiO2 nano-particle photocatalysts showed significantly higher photocatalytic reactivity for the complete oxidation of 2-propanol diluted with water into CO2 and H2O. It can be considered a viable alternative method for the preparation of high performance TiO2 nano-particle photocatalysts for widespread commercial applications.  相似文献   

10.
《Ceramics International》2021,47(21):30194-30202
Transition bimetallic sulfides have attracted widespread attention because of their superior electrochemical characteristics compared to their parent materials. Herein, ternary ZnCo2S4 was deposited on g-C3N4 (CN) to enhance the photocatalytic water splitting reactivity of CN. The hydrogen (H2) evolution rate of 25 wt%-ZnCo2S4/CN reached 6619 μmol h−1 g−1, which was 55.2 times higher than that of CN alone. Under the same conditions, ZnS/CN and Co3S4/CN were also synthesized, and their H2 evolution rates were both inferior to that of ZnCo2S4/CN. Investigations showed that the presence of both zinc and cobalt ions in ZnCo2S4 lowered the H2 evolution overpotential and charge recombination rate, leading to excellent H2 release activity. In addition, the composite maintained its activity even after reacting for 20 h, and the charge transfer mechanism between ZnCo2S4 and CN was subject to the S-scheme charge transfer route according to trapping experiments for active species. This work revealed a promising and efficient bimetallic sulfide heterojunction to enhance H2 evolution during water splitting and thus achieved improved conversion efficiency for solar energy applications.  相似文献   

11.
A perovskite-like compound La2CuO4-based material, a well-known high-temperature superconductor, was studied as a photocatalyst. H2 was produced over La2CuO4 from aqueous solutions containing methanol as a sacrificial reagent under high-pressure Hg lamp irradiation. The photocatalytic activity of La2CuO4 is superior to that of the commercial anatase TiO2, and can be greatly improved by loading with Cu2O. Photoelectrochemical measurements revealed that the conduction band minimum of the La2CuO4 photocatalysts is thermodynamically feasible for the reduction reaction of water and Cu2O efficiently increase the electron–hole separation on La2CuO4 under photon irradiation to account for its higher photocatalytic activity.  相似文献   

12.
The complete photocatalytic oxidation of C2H4 with O2 into CO2 and H2O has been achieved on ultrafine powdered TiO2 photocatalysts and the addition of H2O was found to enhance the reaction. The photocatalytic reaction has been studied by IR, ESR, and analysis of the reaction products. UV irradiation of the photocatalysts at 275 K led to the photocatalytic oxidation of C2H4 with O2 into CO2, CO, and H2O. The large surface area of the photocatalyst is one of the most important factors in achieving a high efficiency in the photocatalytic oxidation of C2H4. The photoformed OH species as well as O 2 and O 3 anion radicals play a significant role as a key active species in the complete photocatalytic oxidation of C2H4 with O2 into CO2 and H2O. Interestingly, small amount of Pt addition to the TiO2 photocatalyst increased the amount of selective formation of CO2 which was the oxidation product of C2H4 and O2.  相似文献   

13.
Zinc orthogermanate was prepared via a hydrothermal method and a remarkable synergistic effect on the photocatalytic activity for overall water splitting was found for Zn2GeO4 co-loaded with noble metals (Pt, Rh, Pd, Au) and metal oxides (RuO2, IrO2). The photocatalytic activity of Pt-RuO2/Zn2GeO4 for overall water splitting is 2.2 times of Pt/Zn2GeO4 and 3.3 times of RuO2/Zn2GeO4. Photocatalytic half reactions evaluation of water splitting for H2 and O2 productions shows that Pt plays the major roles in H2 production and RuO2 promotes the O2 production. The roles and valence states of co-catalysts and the mechanism of photocatalytic reaction are discussed.  相似文献   

14.
ZnIn2S4/K2La2Ti3O10 composite photocatalysts were synthesized via a hydrothermal route. The photocatalysts were characterized by the X-ray diffraction, scanning electron microscopy, ultraviolet–visible (UV–vis) diffuse reflection spectra and photoluminescence measurements. The UV–vis results indicated that ZnIn2S4/K2La2Ti3O10 has a strong absorption in the visible light region. The compositions of ZnIn2S4/K2La2Ti3O10 composite photocatalysts were optimized according to the photocatalytic activity for hydrogen production from aqueous Na2S/Na2SO3. The composite photocatalyst loading 25 wt.% ZnIn2S4 exhibited the highest photocatalytic activity, the amount of H2 production was 6.29 mmol/g after 3 h irradiation under visible light irradiation.  相似文献   

15.
The splitting of water molecules under the influence of solar light on semiconducting electrodes is a clean and renewable source for the production of hydrogen fuel. Its efficiency depends on the relative position of the band-gap edges or the induced defect levels with a proper band alignment relative to the redox H+/H2 and O2/H2O potentials. For example, TiO2 and ZnO bulk, as well as thick slabs (whose band gaps are ∼3.2–3.4 eV), can be active only for photocatalytic applications under UV irradiation (possessing ∼1 % solar energy conversion efficiency). Nevertheless, by adjusting the band gap through formation of nanostructures and further doping, the efficiency can be increased up to ∼15 % (for 2.0–2.2 eV band gap). We analyse results of DFT (density functional theory) calculations on TiO2 nanotubes and ZnO nanowires, both pristine and doped (e.g., by AgZn, CO, FeTi, NO and SO substitutes). To reproduce the energies of one-electron states better, we have incorporated the Hartree-Fock (HF) exchange into the hybrid DFT+HF Hamiltonian. Both the atomic and electronic structure of nanomaterials, simulated by us, are analysed to evaluate their photocatalytic suitability, including positions of the redox potential levels inside the modified band gap, the width of which corresponds to visible-light energies. Analysis of the densities of states (DOS) for considered nanostructures clearly shows that photocatalytic properties can be significantly altered by dopants. The chosen hybrid methods of first-principles calculations significantly simplify selection of suitable nanomaterials possessing the required photocatalytic properties under solar light irradiation.  相似文献   

16.
Photocatalytic reduction of CO2 is known as one of the most promising methods to produce valuable fuels and value-added compounds. To overcome selectivity and efficiency downsides, various photocatalysts have been designed and developed. This review discusses the state-of-the-art in photo-conversion of CO2 over graphitic carbon nitride (g-C3N4)-based composites. The modification strategies to improve photocatalytic activity of g-C3N4 were classified into different categories and discussed as structural modifications, elemental doping, copolymerization, fabricating heterojunctions between g-C3N4 and other semiconductors, Z-scheme heterojunctions, noble metal/g-C3N4 photocatalysts, and design of ternary nanocomposites based on g-C3N4. Finally, perspectives and future research works in this field were also outlined.  相似文献   

17.
The rational design of hierarchical heterojunction photocatalysts with efficient spatial charge separation remains an intense challenge in hydrogen generation from photocatalytic water splitting. Herein, a noble-metal-free MoS2/g-C3N4/ZnIn2S4 ternary heterostructure with a hierarchical flower-like architecture was developed by in situ growth of 3D flower-like ZnIn2S4 nanospheres on 2D MoS2 and 2D g-C3N4 nanosheets. Benefiting from the favorable 2D-2D-3D hierarchical heterojunction structure, the resultant MoS2/g-C3N4/ZnIn2S4 nanocomposite loaded with 3 wt% g-C3N4 and 1.5 wt% MoS2 displayed the optimal hydrogen evolution activity (6291 μmol g?1 h?1), which was a 6.96-fold and 2.54-fold enhancement compared to bare ZnIn2S4 and binary g-C3N4/ZnIn2S4, respectively. Structural characterizations reveal that the significantly boosted photoactivity is closely associated with the multichannel charge transfer among ZnIn2S4, MoS2, and g-C3N4 components with suitable band-edge alignments in the composites, where the photogenerated electrons migrate from g-C3N4 to ZnIn2S4 and MoS2 through the intimate heterojunction interfaces, thus enabling efficient electron-hole separation and high photoactivity for hydrogen evolution. In addition, the introduction of MoS2 nanosheets highly benefits the improved light-harvesting capacity and the reduced H2-evolution overpotential, further promoting the photocatalytic H2-evolution performance. Moreover, the MoS2/g-C3N4/ZnIn2S4 ternary heterostructure possesses prominent stability during the photoreaction process owing to the migration of photoinduced holes from ZnIn2S4 to g-C3N4, which is deemed to be central to practical applications in solar hydrogen production.  相似文献   

18.
Nanoporous photocatalysts have been designed to exhibit unique photocatalytic activities through framework substitution of titanium species or surface immobilization of rhenium complex onto mesoporous silica. This article summarizes recent work on the synthesis, characterization and photocatalytic activities of the designed porous photocatalysts performed by the present authors. Various spectroscopic investigations revealed that the photo-excited states of these catalysts play a vital role in the photocatalytic reactions and their photocatalytic reactivities are strongly dependent on structures of active sites, which are confined and immobilized in the restricted framework structure of the mesoporous silica. Highly dispersed titanium oxide species incorporated in the framework of mesoporous silica exhibited high and unique photocatalytic reactivity for the reduction of CO2 with H2O to produce CH4 and CH3OH under UV irradiation, its reactivity being much higher than bulk TiO2. The cationic rhenium(I) complex was encapsulated into a mesoporous AlMCM-41 material by ion-exchange method, yielding a visible light photocatalyst to be active for photocatalytic reduction of CO2.  相似文献   

19.
Constructing efficient and cost-effective photocatalysts are highly desirable for photocatalytic hydrogen evolution. Herein, we prepare a unique 2D-2D architecture photocatalyst composed of CoP and ZnIn2S4 (ZIS) nanosheets through electrostatic self-assembly method. The constructed 2D-2D CoP/ZIS exhibit a remarkably enhanced photocatalytic performance with hydrogen production rate of 8.775 mmol g−1 h−1, and this value is much higher than ZIS and most of other ZIS-based nanohybrids. Additionally, the nanohybrids possess excellent stability with 96.3% of initial activity remaining after 24 hours of testing. These satisfactory results are attributed to the large/intimate contact interface and the photo/electro-chemical properties of ZIS and CoP, which improves light absorption, facilitates photoelectron transport and suppresses charge recombination. This work not only demonstrates ZIS nanosheet can serve as a versatile and effective platform supporting non-noble metal nanosheets to boost their photocatalytic performance, but also offers a general and simple electrostatic self-assembly method to design 2D-2D-based heterostructures for hydrogen conversion from water splitting.  相似文献   

20.
TiO2, which is one of the most explored materials, has emerged as an excellent photocatalyst material for environmental and energy fields, including air and water purification, self-cleaning surfaces, antibacterial and water splitting. This review summarizes recent research developments of TiO2-based photocatalyst used for photocatalytic antibacterial applications. Several strategies to enhance the efficiency of TiO2 photocatalyst are discussed, including doping with metal ions, noble metals, non-metals, and coupling with other materials. The mechanism of photocatalytic antibacterial activity in the presence of nano-sized TiO2 is also discussed. The modified TiO2 photocatalyst significantly inhibits the growth of bacterial cells in response to visible light illumination. TiO2 photocatalysis appears to be promising as a route of advanced oxidation process for environmental remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号