首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nano‐structured cathodes of La0.65Sr0.3Co0.2Fe0.8O3–δ (LSCF) are fabricated by solution precursor plasma spraying (SPPS) on yttria stabilized zirconia (YSZ) electrolytes (LSCF‐SPPS‐YSZ). Phase pure LSCF is obtained at all plasma power. Performances of LSCF‐SPPS‐YSZ cathodes are compared with conventionally prepared LSCF cathodes on YSZ (LSCF‐C‐YSZ) and gadolinium doped ceria (GDC) (LSCF‐C‐GDC) electrolytes. High Rp is observed in the LSCF‐C‐YSZ (∼42 Ohm cm2 at 700 °C) followed by LSCF‐C‐GDC (Rp ∼ 1.5 Ohm cm2 at 700 °C) cathodes. Performance of the LSCF‐SPPS‐YSZ cathodes (Rp ∼ 0.1 Ohm cm2 at 700 °C) is found to be even superior to the performance of LSCF‐C‐GDC cathodes. High performance in LSCF‐SPPS‐YSZ cathodes is attributed to its nano‐structure and absence of any interfacial insulating phase which may be attributed to the low temperature at the interaction point of LSCF and YSZ and low interaction time between LSCF and YSZ during SPPS process. In the time scale of 100 h, no change in the polarization resistances is observed at 750 °C. Based on the literature and from the present studies it can be stated that SOFC with YSZ electrolyte and LSCF‐SPPS‐YSZ cathode can be operated at 750 °C for a longer duration of time and good performance can probably be achieved.  相似文献   

2.
J. Harris  Y. Yan  R. Bateni  O. Kesler 《Fuel Cells》2016,16(3):319-329
The degradation of composite LSCF‐SDC cathodes on porous 430 stainless steel supports was investigated. Two degradation mechanisms were observed: a multi‐layer oxide scale, believed to consist of Cr2O3 and SrCrO4, formed at the support‐cathode interface, and small amounts of chromium were detected within the cathodes. To reduce degradation, La2O3 and Y2O3 reactive element oxide coatings were deposited on the internal pore surfaces of the metal supports. The reactive element oxide coatings reduced the amount of volatile chromium that deposited in the cathodes. As a result, the degradation rates of the cathodes on coated supports were significantly lower than the degradation rates of cathodes made on uncoated metal supports. In cathode symmetrical cells, polarization resistance degradation rates as low as 2.56 × 10−6 Ω cm2 h−1 were observed over 100 hours on coated metal supports, compared to an average of 1.23 × 10−4 Ω cm2 h−1 on uncoated supports.  相似文献   

3.
Thin cathodes for micro‐solid oxide fuel cells (micro‐SOFCs) are fabricated by spin‐coating a suspension of La0.6Sr0.4CoO3–δ (LSC) nanoparticulates obtained by salt‐assisted spray pyrolysis. The resulting 250 nm thin LSC layers exhibit a three‐dimensional porous microstructure with a grain size of around 45 nm and can be integrated onto free‐standing 3 mol.% yttria‐stabilized‐zirconia (3YSZ) electrolyte membranes with high survival rates. Weakly buckled micro‐SOFC membranes enable a homogeneous distribution of the LSC dispersion on the electrolyte, whereas the steep slopes of strongly buckled membranes do not allow for a perfect LSC coverage. A micro‐SOFC membrane consisting of an LSC cathode on a weakly buckled 3YSZ electrolyte and a sputtered Pt anode has an open‐circuit voltage of 1.05 V and delivers a maximum power density of 12 mW cm–2 at 500 °C.  相似文献   

4.
The metal‐supported intermediate temperature solid oxide fuel cells with a porous nickel substrate, a nano‐structured LDC (Ce0.55La0.45O2–δ)–Ni composite anode, an LDC diffusion barrier layer, an LSGM (La0.8Sr0.2Ga0.8Mg0.2O3–δ) electrolyte, an LSCF (La0.58Sr0.4Co0.2Fe0.8O3–δ)–LSGM composite cathode interlayer and an LSCF cathode current collector are fabricated by atmospheric plasma spraying. Four different plasma spraying powers of 26, 28, 30, and 34 kW are used to fabricate the LSCF–LSGM composite cathode interlayers. Each cell with a prepared LSCF–LSGM composite cathode interlayer has been post‐heat treated at 960 °C for 2 h in air with an applied pressure of 450 g cm–2. The current‐voltage‐power and AC impedance measurements indicate that the LSCF–LSGM composite cathode interlayer formed at 28 kW plasma spraying power has the best power performance and the smallest polarization resistance at temperatures from 600 to 800 °C. The microstructure of the LSCF–LSGM composite cathode interlayer shows to be less dense and composed of smaller dense regions as the plasma spraying power decreases to 28 kW. The durability test of the cell with an optimized LSCF–LSGM composite cathode interlayer gives a degradation rate of 1.1% kh–1 at the 0.3 A cm–2 constant current density and 750 °C test temperature.  相似文献   

5.
P. Guo  X. Huang  X. Zhu  Z. Lü   Y. Zhou  L. Li  Z. Li  B. Wei  Y. Zhang  W. Su 《Fuel Cells》2013,13(5):666-672
In this study, Ca3Co4O9+δ (CCO) and La0.7Sr0.3CoO3 (LSC) have been mixed as mass fraction by 1:1, to prepare novel two‐phase composites with high electrical conductivity and low thermal expansion coefficient (TEC), for potential application in intermediate‐temperature solid oxide fuel cells. The conductivity of the composite, Ca3Co4O9+δ (50 wt.%) + La0.7Sr0.3CoO3 (50 wt.%) (CCO‐LSC50), is improved to be three times that of single phase CCO material. And, the TEC of CCO‐LSC50 has been effectively improved to be 15.3 × 10–6 °C–1, about 20% lower than single phase LSC cathode, which ensures better chemical compatibility with adjacent electrolyte. As a result, compared with pure LSC and CCO cathodes, CCO‐LSC50 composite cathode improves the electrochemical performance, a percentage of 16 and 84%, respectively, according to the impedance spectra experiments. In addition, cathodic overpotential and oxygen reduction kinetics have also been researched to reveal what is driving the results. The microstructures and phases of cathodes were also compared and analyzed.  相似文献   

6.
A solid oxide fuel cell (SOFC) unit is constructed with Ni‐Ce0.9Gd0.1O2 – δ (GDC) as the anode, yttria‐stabilised zirconia (YSZ) as the electrolyte and Pt, Ag or Cu‐added La0.58Sr0.4Co0.2Fe0.8O3 – δ (LSCF)–GDC as the cathode. The current–voltage measurements are performed at 800 °C. Cu addition leads to best SOFC performance. LSCF–GDC–Cu is better than LSCF–GDC and much better than GDC as the material of the cathode interlayer. Cu content of 2 wt.‐% leads to best SOFC performance. A cathode functional layer calcined at 800 °C is better than that calcined at higher temperature. Metal addition increases the O2 dissociation reactivity but results in an interfacial resistance for O transfer. A balance between the rates of O2 dissociation and interfacial O transfer is needed for best SOFC performance.  相似文献   

7.
Interconnect‐cathode interfacial adhesion is important for the durability of solid oxide fuel cell (SOFC). Thus, the use of a conductive contact layer between interconnect and cathode could reduce the cell area specific resistance (ASR). The use of La0.6Sr0.4FeO3 (LSF) cathode, LaNi0.6Fe0.4O3–δ (LNF) contact layer and Crofer22APU interconnect was proposed as an alternative cathode side. LNF‐LSF powder mixtures were heated at 800 °C for 1,000 h and at 1,050 °C for 2 h and analyzed by X‐Ray power diffraction (XRD). The results indicated a low reactivity between the materials. The degradation occurring between the components of the half‐cell (LSF/LNF/Crofer22APU) was studied. XRD results indicated the formation of secondary phases, mainly: SrCrO4, A(B, Cr)O3 (A = La, Sr; B = Ni, Fe) and SrFe12O19. Scanning electron microscopy with energy dispersive X‐Ray spectroscopy (SEM‐EDX) and the X‐Ray photoelectron spectroscopy (XPS) analyzes confirmed the interaction between LSF/LNF and the metallic interconnect due to the Cr vaporization/migration. An increment of the resistance of ∼0.007 Ω cm2 in 1,000 h is observed for (LSF/LNF/Crofer22APU) sample. However, the ASR values of the cell without contact coating, (LSF/Crofer22APU), were higher (0.31(1) Ω cm2) than those of the system with LNF coated interconnect (0.054(7) Ω cm2), which makes the proposed materials combination interesting for SOFC.  相似文献   

8.
D. Xie  W. Guo  R. Guo  Z. Liu  D. Sun  L. Meng  M. Zheng  B. Wang 《Fuel Cells》2016,16(6):829-838
A series of iron‐based perovskite oxides BaFe1−xCuxO3−δ (x = 0.10, 0.15, 0.20 and 0.25, abbreviated as BFC‐10, BFC‐15, BFC‐20 and BFC‐25, respectively) as cathode materials have been prepared via a combined EDTA‐citrate complexing sol‐gel method. The effects of Cu contents on the crystal structure, chemical stability, electrical conductivity, thermal expansion coefficient (TEC) and electrochemical properties of BFC‐x materials have been studied. All the BFC‐x samples exhibit the cubic phase with a space group Pm3m (221). The electrical conductivity decreases with increasing Cu content. The maximum electrical conductivity is 60.9 ± 0.9 S cm−1 for BFC‐20 at 600 °C. Substitution of Fe by Cu increases the thermal expansion coefficient. The average TEC increases from 20.6 × 10−6 K−1 for BFC‐10 to 23.7 × 10−6 K−1 for BFC‐25 at the temperature range of 30–850 °C. Among the samples, BFC‐20 shows the best electrochemical performance. The area specific resistance (ASR) of BFC‐20 on SDC electrolyte is 0.014 Ω cm2 at 800 °C. The single fuel cell with the configguration of BFC‐20/SDC/NiO‐SDC delivers the highest power density of 0.57 W cm−2 at 800 °C. The favorable electrochemical activities can be attributed to the cubic lattice structure and the high oxygen vacancy concentration caused by Cu doping.  相似文献   

9.
Ce0.8Y0.2O2–δ (YDC) was infiltrated into a BaCo0.7Fe0.2Nb0.1O3–δ (BCFN) cathode of intermediate temperature sold oxide full cells (IT‐SOFCs) in order to decrease its cathodic polarization resistance. BCFN and YDC infiltrated BCFN electrodes were fabricated on dense Ce0.8Gd0.2O2–δ (GDC) thin pellets to form symmetrical cells. The electrochemical impedance spectra of the symmetrical cells were investigated in this present study. Firstly, the thickness of BCFN electrodes was optimized, and controlled at 30 µm for further study. The effects of infiltrated YDC amount and firing temperature on electrode polarization resistance were studied. The symmetrical cells infiltrated with 30 μL YDC solution and fired at 900 °C exhibited the lowest electrode polarization resistance in all samples. It was suggested that infiltration of YDC resulted in more active sites and prolonged TPBs in electrodes, improving the surface oxygen exchange, and finally improved the electrode performance.  相似文献   

10.
Z. Ding  R. Guo  W. Guo  Z. Liu  G. Cai  H. Jiang 《Fuel Cells》2016,16(2):252-257
A novel K2NiF4‐type oxide Pr1.7Sr0.3CuO4 (PSCu) is studied to obtain its electrochemical properties as the cathode for intermediate‐temperature solid oxide fuel cells (IT‐SOFCs). The PSCu cathode powder and Ce0.8Sm0.2O1.9 (SDC) electrolyte powder were synthesized by sol‐gel method and glycine‐nitrate method, respectively. The crystal structure of PSCu powder and PSCu‐SDC composite powder were identified with X‐ray diffraction (XRD). It is shown that PSCu belongs to tetragonal K2NiF4‐type and has good chemical compatibility with SDC. The thermal expansion coefficient (TEC) of PSCu is close to that of SDC. The conductivity of PSCu tested with four‐probe method exhibits a semiconductor‐pseudometal transformation at 400–450 °C, where the maximum conductivity of 103.6 S cm−1 is obtained. The polarization test indicates the area specific resistance (ASR) of PSCu decreases with increasing temperature, reaching 0.11 Ω cm2 at 800 °C. The activation energy of oxygen reduction reaction during 600–800 °C is 1.19 eV. The single fuel cell performance test reveals the open circuit voltage (OCV) and resistivity of PSCu reduce with increasing temperature, but the power density ascends with increasing temperature. The maximal power density is 243 mW cm−2 at 800 °C, and the corresponding current density and OCV are 633 mA cm−2 and 0.77 V, respectively.  相似文献   

11.
In this paper, the Ce1–xSmxO2–x/2 (x = 0.025, 0.05, 0.1, 0.2) samples were synthesized and then mixed with GdBaCo2O5+δ (GBCO) to form GBCO–Ce1–xSmxO2–x/2 composite cathodes. The electrochemical performance of the composite cathodes was investigated by the electrochemical impedance spectroscopy (EIS) as a function of temperature and oxygen partial pressure. The impedance spectra results demonstrated that the introduction of proper Ce1–xSmxO2–x/2 phase remarkably enhanced the electrochemical performance of GBCO cathode and caused a reduction in the total polarization resistance (Rp). Furthermore, as the amount of Ce1–xSmxO2–x/2 in composite cathode was fixed, the variation of Sm content in Ce1–xSmxO2–x/2 also had a significant influence on the electrochemical performance of the GBCO–Ce1–xSmxO2–x/2 cathodes. For example, the Rp of GBCO cathodes containing 10 wt.% Ce1–xSmxO2–x/2 considerably reduced from 0.37 to 0.17 Ω cm2 at 600 °C with the decreasing Sm content x from 0.2 to 0.025. The improvement in performance of the GBCO–Ce1–xSmxO2–x/2 cathodes compared to pure GBCO cathode could be mainly attributed to the catalytic activity of Ce1–xSmxO2–x/2 towards the surface diffusion related processes, which was an elementary step in oxygen reduction reaction at cathode.  相似文献   

12.
In this paper we present results for a high power density IT‐SOFC and a method for dispersing nanosized Ce0.9Gd0.1O1.95 (GDC) particles at the GDC electrolyte and Ni‐GDC anode interface. Dispersed nanosized particles were deposited to form an anode functional layer (AFL). Anode supports were prepared by tape casting of large micron‐sized NiO powder and sub micron‐sized GDC powder without pore former. For the cathode a La0.6Sr0.4Co0.2Fe0.8O3 – δ (LSCF)‐GDC composite was used. Without an AFL the open circuit potential (OCP) and the maximum power density were 0.677 V and 407 mW cm–2, respectively, at 650 °C using 30 sccm of hydrogen and air flow‐rate. With an AFL the OCP and the maximum power density increased to 0.796 V and 994 mW cm–2, respectively, at the same temperature. Two point probe impedance measurements revealed that the AFL fabricated by the proposed method not only increased the OCP but also reduced the electrode polarisation by 68%. The effect of gas flow‐rate is also present in this paper. When hydrogen and air flow‐rate is increased to 90 sccm, the sample with AFL obtained 1.57 W cm–2 at 650 °C.  相似文献   

13.
Z. Tao  G. Hou  Q. Zhang  S. Sang  F. Xing  B. Wang 《Fuel Cells》2016,16(2):263-266
Ba0.5Sr0.5Co0.7In0.1Fe0.2O3−δ powders are successfully synthesized as the cathode materials for proton‐conducting solid oxide fuel cells (SOFCs). The prepared cells consisting of the structure of a BaZr0.1Ce0.7Y0.2O3−δ (BZCY7)‐NiO anode substrate, a BZCY7 electrolyte membrane and a cathode layer, are measured from 600 to 700 °C with humidified hydrogen (ca. 3% H2O) as the fuel. The electrochemical results show that the cell exhibits a high power density which could obtain an open‐circuit potential of 0.986 V and a maximum power density of 400.84 mW cm−2 at 700 °C. The polarization resistance measured at the open‐circuit condition is only 0.15 Ω cm2 at 700 °C.  相似文献   

14.
Solid oxide fuel cells (SOFCs) based on the proton conducting BaZr0.1Ce0.7Y0.2O3–δ (BZCY) electrolyte were prepared and tested in 500–700 °C using humidified H2 as fuel (100 cm3 min–1 with 3% H2O) and dry O2 (50 cm3 min–1) as oxidant. Thin NiO‐BZCY anode functional layers (AFL) with 0, 5, 10 and 15 wt.% carbon pore former were inserted between the NiO‐BZCY anode and BZCY electrolyte to enhance the cell performance. The anode/AFL/BZCY half cells were prepared by tape casting and co‐sintering (1,300 °C/8 h), while the Sm0.5Sr0.5CoO3–δ (SSC) cathodes were prepared by thermal spray deposition. Well adhered planar SOFCs were obtained and the test results indicated that the SOFC with an AFL containing 10 wt.% pore former content showed the best performance: area specific resistance as low as 0.39 Ω cm2 and peak power density as high as 0.863 W cm–2 were obtained at 700 °C. High open circuit voltages ranging from 1.00 to 1.12 V in 700–500 °C also indicated negligible leakage of fuel gas through the electrolyte.  相似文献   

15.
W. Jiang  B. Wei  Z. Lü  Z. H. Wang  X. B. Zhu  L. Zhu 《Fuel Cells》2014,14(6):966-972
A 70 wt.% Sm0.5Sr0.5CoO3 – 30 wt.% Sm0.2Ce0.8O1.9 (SSC–SDC73) composite cathode was co‐synthesized by a facile one‐step sol–gel method, which showed lower polarization resistance and overpotential than those of physically mixed SSC–SDC73 cathode. The polarization resistance of co‐synthesized SSC–SDC73 cathode at 800 °C was as low as 0.03 Ω cm2 in air. Scanning electron microscopy (SEM) images showed that the enhanced electrochemical property was mainly attributed to the smaller grains and good dispersion of SSC and SDC phases within the composite cathode, leading to an increase in three‐phase boundary length. The dependence of polarization resistance with oxygen partial pressure indicated that the rate‐limiting step for oxygen reduction reaction was the dissociation of molecular oxygen to atomic oxygen process. An anode supported fuel cell with a co‐synthesized SSC–SDC73 cathode exhibited a peak power density of 924 mW cm−2 at 800 °C. Our results suggested that co‐synthesized composite was a promising cathode for intermediate temperature solid oxide fuel cells (IT‐SOFCs).  相似文献   

16.
S. Li  H. Tu  L. Yu  M. T. Anwar 《Fuel Cells》2016,16(6):822-828
A novel fabrication process for solid oxide fuel cells (SOFCs) with La0.2Sr0.7TiO3–δ (LSTA–) as anode support and La2NiO4+δ (LNO) as cathode material, which avoids complicated impregnation process, is designed and investigated. The LSTA– anode‐supported half cells are reduced at 1,200 °C in hydrogen atmosphere. Subsequently, the LNO cathode is sintered on the YSZ electrolyte at 1,200 °C in nitrogen atmosphere and then annealed in situ at 850 °C in air. The results of XRD analysis and electrical conductivity measurement indicate that the structure and electrochemical characteristics of LNO appear similar before and after the sintering processes of the cathode. By using La0.6Sr0.4CoO3–δ (LSC) as current collector, the cell with LNO cathode sintered in nitrogen atmosphere exhibits the power density at 0.7 V of 235 mW cm−2 at 800 °C. The ohmic resistance (RS) and polarization resistance (RP) are 0.373 and 0.452 Ω cm2, respectively. Compared to that of the cell with the LNO cathode sintered in air, the sintering processes of the cell with the LNO cathode sintered in nitrogen atmosphere can result in better electrochemical performance of the cell mainly due to the decrease in RS. The microstructures of the cells reveal a good adhesion between each layer.  相似文献   

17.
For investigating the direct applicability of highly active cobalt containing cathodes on YSZ electrolytes at a lower processing and operating temperature range (T ≤ 650 °C), we fabricated a thin film lanthanum strontium cobalt oxide (LSC) cathode on an yttria stabilised zirconia (YSZ)‐based solid oxide fuel cell (SOFC) via pulsed laser deposition (PLD). Its electrochemical performance (5.9 mW cm–2 at 0.7 V, 650 °C) was significantly inferior to that (595 mW cm–2 at 0.7 V, 650 °C) of an SOFC with a thin (t ∼ 200 nm) gadolinium doped ceria (GDC) buffer layer in between the LSC thin film cathode and the YSZ electrolyte. It implies that even though the cathode processing and cell operating temperatures were strictly controlled not to exceed 650 °C, the direct application of LSC on YSZ should be avoided. The origin of the cell performance deterioration is thoroughly studied by glancing angle X‐ray diffraction (GAXRD) and transmission electron microscopy (TEM), and the decomposition of the cathode and diffusion of La and Sr into YSZ were observed when LSC directly contacted YSZ.  相似文献   

18.
A layered perovskite EuBaCo2O5+δ (EBCO) has been prepared by a solid‐state reaction, and evaluated as potential cathode for intermediate‐temperature solid oxide fuel cells. Structural characterizations are determined at room temperature using powder X‐ray diffraction and transmission electron microscopy technique. The good fits to the XRD data by Rietveld refinement method are obtained in the orthorhombic space group (Pmmm). The lower average thermal expansion coefficient, 14.9 × 10–6 °C–1 between 100 and 800 °C, indicates its better thermal expansion compatibility with conventional electrolytes, compared with the other cobalt‐containing cathode materials. The high electrical conductivity and large oxygen nonstoichiometry at intermediate temperatures suggest the effective charge transfer reactions including electron conduction and oxide‐ion motion in cathode. As a result, a highly electrochemical activity towards the oxygen reduction reaction is achieved between 600 and 700 °C, as evidenced by low area‐specific resistances, e.g. 0.14–0.5 Ω cm2. In addition, cathodic overpotential and oxygen reduction kinetics of the EBCO cathode have also been studied.  相似文献   

19.
V. B. Vert  J. M. Serra 《Fuel Cells》2010,10(4):693-702
Active perovskite‐based SOFC cathodes have been developed through lanthanide combination in the (La1 – x yPrxSmy)0.58Sr0.4Fe0.8Co0.2O3 – δ system following a ternary mixture experimental design. These compositions were prepared through a sol–gel method and characterised by electrochemical impedance spectroscopy (EIS) as symmetrical cells on GDC‐electrolyte samples in the 450–650 °C temperature range. The electrochemical properties of the single lanthanide‐based Ln0.58Sr0.4Fe0.8Co0.2O3 – δ compounds were enhanced when different lanthanides were combined together in the same crystalline structure. The observed improvement does not follow a mere additional effect of the performance from the parent Ln0.58Sr0.4Fe0.8Co0.2O3 – δ compounds, i.e. it does not follow a linear behaviour, and the better performance is ascribed to synergetic catalytic effects among lanthanide cations. A reduction in electrode polarisation resistance with respect to non‐substituted compositions is stated for most Ln0.58Sr0.4Fe0.8Co0.2O3 – δ electrode compositions combining two or three lanthanides. Samarium addition to the electrode material involves a substantial reduction in the activation energy and the reduction degree is directly dependant on the samarium amount incorporated in the lattice. The best performing composition comprises a praseodymium‐rich lanthanum‐based electrode material. The experimental data derived from the ternary mixture design were modelled using nonlinear functions and this modelling allowed finding an electrode composition minimising the polarisation resistance while maintaining the activation energy at reduced values. Selected cathode compositions were tested in fully assembled anode‐supported cells and electrochemical characterisation supports the cooperative effect of lanthanide combination.  相似文献   

20.
In this work, La0.6Sr0.4CoO3 – δ/Ce1 – xGdxO2 – δ (LSC/GDC) composite cathodes are investigated for SOFC application at intermediate temperatures, especially below 700 °C. The symmetrical cells are prepared by spraying LSC/GDC composite cathodes on a GDC tape, and the lowest polarisation resistance (Rp) of 0.11 Ω cm2 at 700 °C is obtained for the cathode containing 30 wt.‐% GDC. For the application on YSZ electrolyte, symmetrical LSC cathodes are fabricated on a YSZ tape coated on a GDC interlayer. The impact of the sintering temperature on the microstructure and electrochemical properties is investigated. The optimum temperature is determined to be 950 °C; the corresponding Rp of 0.24 Ω cm2 at 600 °C and 0.06 Ω cm2 at 700 °C are achieved, respectively. An YSZ‐based anode‐supported solid oxide fuel cell is fabricated by employing LSC/GDC composite cathode sintered at 950 °C. The cell with an active electrode area of 4 × 4 cm2 exhibits the maximum power density of 0.42 W cm–2 at 650 °C and 0.54 W cm–2 at 700 °C. More than 300 h operating at 650 °C is carried out for an estimate of performance and degradation of a single cell. Despite a decline at the beginning, the stable performance during the later term suggests a potential application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号