共查询到20条相似文献,搜索用时 31 毫秒
1.
认知无线电(Cognitive Radio,CR)技术通过智能的频谱管理来解决频谱资源"短缺"问题,它能够感知到授权用户的空闲频谱,并有效地加以利用,从而减少与授权用户的冲突。现有无线电参数调整策略无法根据环境变化和用户需求进行智能调整,认知引擎中的决策方法能够解决该问题。遗传算法(Genetic Algorithm,GA)和二进制粒子群算法是实现认知引擎决策的典型算法,在对2种算法进行了介绍之后,仿真比较了2种算法在性能方面的差异。 相似文献
2.
目前亟待解决如何获得认知无线电系统效益最大化问题,而求解最优频谱分配方法是一项关键技术,针对传统粒子群(PSO)算法收敛速度慢、易陷入局部最优解等缺陷,提出一种基于鲶鱼粒子群算法(CE-PSO)的认知无线电频谱分配方法。首先建立认知无线电频谱分配优化的数学模型,然后以用户取得的效益最大化为优化目标,引入\"鲶鱼效应\",保持粒子群的多样性,通过粒子间信息交流找到空闲频谱最优分配方案,最后采用仿真实验测试CE-PSO算法的有效性。结果表明,CE-PSO算法克服了PSO算法的缺陷,可以快速、准确地寻找到最优频谱分配方案,更好地实现系统效益的最大化,可以满足认知无线电系统的应用需求。 相似文献
3.
4.
5.
The statistical characteristics of the network state changes were analyzed by using the CTMC model.Considering the difference of each secondary user’s sensing ability,two integer programming problems on cooperative sensing scheduling scheme were established from two aspects:the primary users and the secondary users respectively.A discrete particle swarm optimization algorithm was proposed to solve the integer programming problems,and compared with the traditional random scheduling scheme and greedy scheduling scheme based on SNR.The simulation results show that the cooperative sensing scheduling scheme based on discrete particle swarm optimization algorithm is superior to random scheduling scheme and greedy scheduling scheme based on the SNR,which gets a higher spectrum sensing accuracy. 相似文献
6.
Yong‐Qiang Hei Xiao-Hui Li Wen‐Tao Li 《International Journal of Communication Systems》2013,26(11):1409-1418
In this paper, with the purpose of integrating the advantages of both the genetic algorithm and the particle swarm optimization, a new genetic particle swarm optimization (GPSO) algorithm is proposed. Furthermore, these three evolutionary algorithms are successfully applied to address the MIMO detection problem. Simulation results reveal that the GPSO‐based detection algorithm takes much less population size and iteration number when compared with the particle swarm optimization‐based detection method and the genetic algorithm‐based detection method. Besides, when compared with the optimal maximum likelihood detection method, the GPSO‐based detection algorithm can strike a much better balance between the BER performance and the computational complexity. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
7.
Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival (DOA). In this method, genetic algorithm (GA) and fuzzy discrete particle swarm optimization (FDPSO) are applied to optimize the direction of arrival and power parameters of the mode simultaneously. Firstly, the GA algorithm is applied to make the solution fall into the global searching. Secondly, the FDPSO method is utilized to narrow down the search field. In FDPSO, chaotic factor and crossover method are added to speed up the convergence. This approach has been demonstrated through some computational simulations. It is shown that the proposed algorithm can estimate both the DOA and the powers accurately. It is more efficient than some present methods, such as Newton-like algorithm, Akaike information critical (AIC), particle swarm optimization (PSO), and genetic algorithm with particle swarm optimization (GA-PSO). 相似文献
8.
9.
基于粒子群的网格任务调度算法研究 总被引:5,自引:0,他引:5
为了更好地解决异构动态环境下的资源管理问题,提出了一种网格环境下的任务调度模型。该模型考虑了当前网格虚拟组织下的计算资源、存储资源和带宽资源,模型的最优化目标是实现三者利用率最高和代价最低,即构造min-max函数。与遗传算法相比,利用粒子群优化算法对min-max函数求解提高了资源的利用率和任务的执行效率,同时在随着迭代次数增加的情况下,搜索速度、寻优率和避免早熟方面也有明显的提高。 相似文献
10.
酒的质量等级评定是一件十分重要的工作。鉴于酒的质量等级为分类变量不能利用传统回归模型,于是采用Logistic回归模型进行建模。在结合一次对葡萄牙清酒全面调查所获得的实际数据的基础上,利用了有序Logistic回归构建了清酒质量等级预测模型,并利用了遗传算法(GA)、粒子群算法(PSO)、遗传-粒子群算法(GA-PSO)三种方法进行优化,得出GAPSO算法比上述其他两种算法能更有效地找出全局最优解。同时,找出了一组能获得最优质量等级的数据。 相似文献
11.
设计两种基于粒子群优化算法(PSO)和基于遗传算法(GA)的多输入多输出(MIMO)系统检测算法。提出一种新的融合GA和PSO进化机制的遗传粒子群进化(GPSO)算法,并将其应用于MIMO系统检测问题求解。新算法改善了初始化种群,并将每一代粒子划为精英粒子、次优粒子和糟糕粒子三部分,对这三种粒子分别采用极值扰动、PSO进化和淘汰策略以改善算法的全局和局部搜索能力,从而加快算法的寻优速率和收敛速度。仿真结果表明:与基于PSO和基于GA的检测算法相比,GPSO的检测算法能够很大程度减少种群规模和迭代次数。而与最优的最大似然译码算法相比,GPSO检测算法能够在计算复杂度和误码性能之间获得很好的折中。 相似文献
12.
Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival(DOA). In this method, a genetic algorithm(GA) and fuzzy discrete particle swarm optimization(FDPSO) are applied to optimize the direction of arrival and power parameters of the mode simultaneously. Firstly, the GA algorithm is applied to make the solution fall into the global searching. Secondly, the FDPSO method is utilized to narrow down the search field. In FDPSO, a chaotic factor and a crossover method are added to speed up the convergence. This approach has been demonstrated through some computational simulations. It is shown that the proposed algorithm can estimate both the DOA and the powers accurately. It is more efficient than some present methods, such as the Newton-like algorithm, Akaike information critical(AIC), particle swarm optimization(PSO), and genetic algorithm with particle swarm optimization(GA-PSO). 相似文献
13.
针对多目标车间作业调度问题(JSP),提出了一种混合遗传算法,将多目标遗传算法得出的初步优化结果作为粒子群算法的初始粒子,利用粒子群算法强化局部搜索,加快收敛速度,改善了简单遗传算法局部搜索能力差、迭代效率低的问题.仿真结果表明了该算法对JSP调度的良好效果. 相似文献
14.
15.
数字电路测试生成中的几种仿生优化算法 总被引:1,自引:0,他引:1
数字集成电路的快速发展对电路测试提出了日益紧迫的要求,为获得较好的数字电路的故障覆盖率和测试集,减少反向回溯,很多仿生学算法应用到了电路的测试生成当中,现介绍了在测试生成领域中有重大影响的几种仿生优化算法以及各自特点。 相似文献
16.
为了解决天线设计人员应用电磁仿真软件优化天线结构时存在的优化方向不明确和优化速度慢的问题,文中以干式水表的嵌入式射频识别标签天线设计为例,提出了基于改进粒子群算法的标签天线结构参数多目标寻优方法。首先,根据干式水表产品追溯需求,提出了中心频点尽可能接近理想中心频点、回波损耗尽可能低、带宽尽可能宽、面积尽可能小的四个目标函数。其次,为避免粒子群算法陷入局部最优,采用多维均匀拉丁超立方初始化、Logistic 混沌映射非线性变化惯性权重、网格划分变化学习因子、高斯扰动策略等方法对算法进行改进,并应用于标签天线结构参数多目标优化中。最后,进行了实例验证。验证结果表明:利用改进后的粒子群算法得到的标签天线结构参数优化结果可更大程度满足优化目标需求,优化耗时仅为电磁仿真软件的40.1%。 相似文献
17.
18.
19.
提出一种粒子群优化方法(PSO)与实数编码遗传算法(GA)相结合的混合改进遗传算法(HIGAPSO).该方法采用混沌序列产生初始种群、非线性排序选择、多个交叉后代竞争择优和变异尺度自适应变化等改进遗传操作;并通过精英个体保留、粒子群优化及改进遗传算法(IGA)三种策略共同作用产生种群新个体,来克服常规算法中收敛速度慢、早熟及局部收敛等缺陷.通过四个高维典型函数测试结果表明该方法不但显著提高了算法的全局搜索能力,加快了收敛速度;而且也改善了求解的质量及其优化结果的可靠性,是求解优化问题的一种有潜力的算法. 相似文献
20.
本文提出了基于连接结构优化的粒子群优化算法(SPSO)用于神经网络训练,该算法在训练神经网络权值的同时优化其连接结构,删除冗余连接,使神经网络获得与模式分类问题匹配的信息处理能力.经SPSO训练的神经网络应用于Iris,Ionosphere以及Breast cancer模式分类问题,能够部分消除冗余分类参数及冗余连接结构对分类性能的影响.与BP算法及遗传算法比较,该算法在提高分类误差精度的同时可加快训练收敛的速度.仿真结果表明,SPSO是有效的神经网络训练算法. 相似文献