共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The statistical characteristics of the network state changes were analyzed by using the CTMC model.Considering the difference of each secondary user’s sensing ability,two integer programming problems on cooperative sensing scheduling scheme were established from two aspects:the primary users and the secondary users respectively.A discrete particle swarm optimization algorithm was proposed to solve the integer programming problems,and compared with the traditional random scheduling scheme and greedy scheduling scheme based on SNR.The simulation results show that the cooperative sensing scheduling scheme based on discrete particle swarm optimization algorithm is superior to random scheduling scheme and greedy scheduling scheme based on the SNR,which gets a higher spectrum sensing accuracy. 相似文献
5.
设计两种基于粒子群优化算法(PSO)和基于遗传算法(GA)的多输入多输出(MIMO)系统检测算法。提出一种新的融合GA和PSO进化机制的遗传粒子群进化(GPSO)算法,并将其应用于MIMO系统检测问题求解。新算法改善了初始化种群,并将每一代粒子划为精英粒子、次优粒子和糟糕粒子三部分,对这三种粒子分别采用极值扰动、PSO进化和淘汰策略以改善算法的全局和局部搜索能力,从而加快算法的寻优速率和收敛速度。仿真结果表明:与基于PSO和基于GA的检测算法相比,GPSO的检测算法能够很大程度减少种群规模和迭代次数。而与最优的最大似然译码算法相比,GPSO检测算法能够在计算复杂度和误码性能之间获得很好的折中。 相似文献
6.
认知无线电(Cognitive Radio,CR)技术通过智能的频谱管理来解决频谱资源"短缺"问题,它能够感知到授权用户的空闲频谱,并有效地加以利用,从而减少与授权用户的冲突。现有无线电参数调整策略无法根据环境变化和用户需求进行智能调整,认知引擎中的决策方法能够解决该问题。遗传算法(Genetic Algorithm,GA)和二进制粒子群算法是实现认知引擎决策的典型算法,在对2种算法进行了介绍之后,仿真比较了2种算法在性能方面的差异。 相似文献
7.
8.
针对函数优化问题,提出了一种基于离差平方和法的粒子群优化算法。该算法用混沌序列初始化粒子的位置和速度,选择好于粒子群优化算法产生的粒子位置。通过离差平方和法进行聚类,利用分类方式来更新粒子的速度。最后将算法应用到3个典型的函数优化问题中,数值结果比较表明,提高了算法搜索能力,全局最优解的精度和收敛速度。 相似文献
9.
粒子群优化算法是模拟鸟类觅食行为思想的随机搜索算法,主要是通过迭代寻找最优解。将粒子随机初始化改进为固定初始化,并将动态分群思想引入粒子群优化算法将整个种群划分为三个子群,根据不同群中粒子的情况自适应地选择惯性权重,以此提高粒子的搜索能力。仿真实验结果表明,该方法大大提高了搜索过程中粒子的多样性,避免粒子陷入局部最优,提高了求解的速度和精度。 相似文献
10.
为提高大视场高灵敏度星敏感器的星图识别速度和识别成功率,提出了一种基于混合粒子群算法的星图识别方法,该方法首先根据星图中星点的灰度信息确定候选识别主星集合;然后选择该集合中的一个星点为圆心,以一定角距为半径画圆,将圆内的所有星点构成特征数据集合;然后利用混合粒子群算法对圆内的星点进行快速路径寻优;最后利用最优路径长度进行索引,并利用最优路径中前三个星点间的角距以及它们的星等信息进行匹配识别;实验结果表明,与现有识别方法相比,该方法具有高的识别率,良好的实时性和鲁棒性,且所需的导航星库容量小. 相似文献
11.
粒子群优化算法(PSO)自提出以来,已经被广泛地应用于求解各类复杂的优化问题,过去对粒子群算法的研究主要集中在融入新的优化方法或对其相关参数进行调整,但这样只会使得PSO更加复杂.针对这一问题,文中提出一种改进的混沌粒子群优化算法(ICPSO),ICPSO从粒子群优化算法的时间与寻优实时角度出发(即在较短的时间内获得较好的解),对粒子速度更新算子进行了简化,每隔一定代数后,在最优解邻近区域引入混沌扰动以避免种群陷入局部最优解.数值实验结果表明:提出的算法相对于文献给出的PSO改进算法,不仅能够获得较好的最优解,而且还具有较快的收敛速度和较好的稳定性. 相似文献
12.
提出了一种基于混沌优化的双种群量子粒子群算法(BCQPSO)。算法利用混沌序列随机生成两个种群,在子种群中惯性权重分别采用不同的更新策略,并通过种群间的融合和变异进行信息交互,提高了算法的收敛速度和解空间的遍历范围。仿真实验结果表明,所提算法具有很好的搜索能力和优化效率。 相似文献
13.
粒子群优化是一种典型的群智能优化技术,在不同的工程领域得到了广泛应用。概述了粒子群优化理论研究进展,从粒子群优化方法本身、优化设计、工程对象属性和模糊建模优势等方面,探讨了粒子群优化的模糊特征。 相似文献
14.
微粒群优化算法在协同建筑设计中的应用 总被引:7,自引:0,他引:7
介绍了群体智能的特点、算法以及基于群体智能的多agent协同设计系统模型。重点介绍微粒群优化算法的原理,工作流程。最后,以一个建筑外观设计为实例,介绍了算法在协同建筑设计组装过程中的应用。 相似文献
15.
Adnan Ahmed Khan Sajid Bashir Muhammad Naeem Syed Ismail Shah Xiaodong Li 《International Journal of Communication Systems》2008,21(12):1239-1257
Symbol detection in multi-input multi-output (MIMO) communication systems using different particle swarm optimization (PSO) algorithms is presented. This approach is particularly attractive as particle swarm intelligence is well suited for real-time applications, where low complexity and fast convergence is of absolute importance. While an optimal maximum likelihood (ML) detection using an exhaustive search method is prohibitively complex, PSO-assisted MIMO detection algorithms give near-optimal bit error rate (BER) performance with a significant reduction in ML complexity. The simulation results show that the proposed detectors give an acceptable BER performance and computational complexity trade-off in comparison with ML detection. These detection techniques show promising results for MIMO systems using high-order modulation schemes and more transmitting antennas where conventional ML detector becomes computationally non-practical to use. Hence, the proposed detectors are best suited for high-speed multi-antenna wireless communication systems. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
16.
为提高局部模糊聚类算法(WFLICM)对噪声图像 分割的抗噪性,克服模糊聚类图像分割算法对初 始聚类中心的敏感性及易陷入局部最优问题,在WFLICM算法的基础上提出一种基于粒子群 优化的融合 局部和非局部空间信息的模糊聚类图像分割算法(PSO-WMNLFCM)。首先,利用粒子群优化 算法的全局 寻优能力得到最优粒子,并以此粒子作为模糊聚类算法的初始聚类中心。其次,用像素的非 局部空间信息 替换模糊因子中的局部邻域值,产生新的目标函数。最后,由拉格朗日乘子法最小化目标函 数,得到隶属 度和聚类中心的更新公式,从而完成图像分割。仿真结果表明,PSO-WMNLFCM算法相比于 模糊局部聚 类(FLICM)算法、局部模糊权重(WFLICM)算法、非局部模糊聚类(NLFCM)算法、非局部模 糊聚类 (MNLFCM)算法、基于粒子 群的局部模糊聚类(PSO-FLICM)算法的划分系数提高了20.92%,20.51%,24.84%,1.44%,23.28%左右。 相似文献
17.
18.
19.
20.
基于粒子群算法的车间作业调度问题 总被引:1,自引:0,他引:1
通过对车间调度问题的描述,针对传统算法寻优效率低的弱点,提出了一种基于粒子群算法的车间作业调度问题的解决方案.对粒子群算法的基本原理进行了阐述,并对粒子群算法的编码、参数的选择以及解码进行了研究,以最小化最大流程时间作为评价算法的性能指标,将其用于编程求解典型调度问题.仿真结果表明,粒子群算法在求解车间作业调度的应用上是十分有效的. 相似文献