首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high velocity impact response of a range of fiber–metal laminates (FMLs) based on a woven glass fiber reinforced polypropylene and an aluminum alloy has been investigated. Tests on FMLs, based on 2024‐O and 2024‐T3 aluminum alloys, were undertaken using a nitrogen gas gun at velocities up to 150 m/s. The failure processes in the FMLs were investigated by examining the samples after impact and by sectioning a number of specimens through the point of impact. The impact response of these multilayered samples was also characterized by measuring the residual out‐of‐plane displacement of the targets after testing. Energy absorption in the FMLs occurred through gross plastic deformation, membrane stretching and tearing in the aluminum plies, as well as delamination, fiber fracture, and matrix cracking in the composite layers. In the multilayered FMLs, the permanent displacement at the perforation threshold remained roughly constant over a range of target configurations, suggesting that the aluminum layers deform almost independently through a membrane stretching mechanism during the perforation process. The impact resistances of the laminates investigated were compared by determining their specific perforation energies (s.p.e.), where it was shown that s.p.e. of several of laminates was almost three times that of the corresponding aluminum alloy. The perforation resistances of the FMLs as well as those of the plain composite were predicted using the Reid–Wen perforation model. Here good agreement was noted between the model and the experimental data for the range of laminates investigated here. POLYM. COMPOS. 27:700–708, 2006. © 2006 Society of Plastics Engineers  相似文献   

2.
The fracture properties and impact response of a series of aluminum foam sandwich structures with the glass fiber–reinforced polypropylene-based fiber-metal laminate (FML) skins have been studied. Initially, the manufacturing process for producing the FML skins was optimized to obtain a strong bond between the composite plies and the aluminum layers. The degree of adhesion between the composite plies and the aluminum was characterized by conducting single cantilever beam tests. Here, it was found that the composites could be successfully bonded to the aluminum using a simple short stamping procedure. A detailed examination of the fracture surfaces indicated that crack propagation occurred within the composite ply in the fiber-metal laminates and along the composite-aluminum foam interface in the sandwich structures. The low velocity impact response of the FMLs and the sandwich structures was investigated using an instrumented drop-weight impact tower and a laser-Doppler velocimeter. The energy absorption characteristics of the sandwich structures were investigated along with the failure processes. Finally, a series of tensile tests on the damaged FMLs and thermoplastic sandwich structures showed that both systems offer promising residual load-bearing properties. Here, shear failure in the aluminum foam was observed in the sandwich structures, indicative of a strong bond between the FML skins and the aluminum core. Polym. Compos. 25:499–509, 2004. © 2004 Society of Plastics Engineers.  相似文献   

3.
Advanced composite materials and fiber‐metal laminates (FMLs) have the potential to offer significant improvements in weight savings and durability in airframe structures. FMLs are an advanced hybrid material system consisting of metal layers bonded with fiber‐reinforced polymer layers. This paper presents an overview of the history of fibre‐metal‐laminates, describes several common types and also discusses the results of impact durability experiments conducted at the Structures, Materials and Propulsion Laboratory of the Institute for Aerospace Research (SMPL‐IAR) of the National Research Council Canada (NRCC). An impact fixture was developed specifically for FMLs and is also described. Numerous low velocity impact tests have been carried out that demonstrate the improved impact response of FMLs over traditional composite materials. This research builds upon earlier impact testing on carbon‐fiber‐reinforced polymers conducted by NRCC and Carleton University.  相似文献   

4.
The present research program has studied the fracture properties of a Fiber‐Metal Laminate (FML) system constituted by aluminum alloy and a high‐impact self‐reinforced composite material. Here, the self‐reinforced composite system consists of a polypropylene matrix reinforced with polypropylene fibers. Initial testing has shown that a though adhesion can be achieved between the aluminum layers and the composite material by incorporating a thermoplastic adhesive interlayer at the common interface. The adhesion at the metal–composite interface has been studied under a wide range of strain rate conditions using a Single Cantilever Beam test geometry, and it has been shown that the interfacial fracture toughness is loading rate sensitive. Interlaminar delamination tests of the plain composite have also been studied and it was shown that their fracture toughness is also loading rate sensitive. Additional tensile tests have shown that the tensile strength and moduli of the FMLs are linearly influenced by the volume fraction of their constituent materials as well as are successfully predicted using a simple rule of mixture. Low velocity impact tests have also shown that the FMLs based on a self‐reinforced polypropylene composite yielded specific perforation energies well above the 30 J m2/kg. It was also shown that by increasing the number of metal and composite plies in the FMLs, resulted in hybrid structures capable of absorbing higher specific low velocity impact energies. POLYM. COMPOS., 35:427–434, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
This paper investigates the interfacial, tensile, and fatigue properties of a novel smart fiber‐metal laminate (FML) based on a nickel‐titanium (Ni‐Ti) shape memory alloy and a woven glass fiber reinforced epoxy. Initial tests, using the single cantilever beam (SCB) geometry, have shown that this unique system offers high values of metal‐composite interfacial fracture toughness. Tensile tests have shown that the mechanical properties of these FMLs lie between those offered by its constituent materials and that their tensile modulus and strength can be easily predicted using a rule of mixtures approach. Tension‐tension fatigue tests have shown that the fatigue performance of notched smart FMLs is superior to that offered by the plain Ni‐Ti alloy. A subsequent optical examination of unnotched laminates tested to failure under tension‐tension fatigue loading has shown that the fracture mechanisms occurring within the Ni‐Ti FMLs are strongly dependent on the applied cyclic stress. POLYM. COMPOS., 28:534–544, 2007. © 2007 Society of Plastics Engineers  相似文献   

6.
Highly isotactic polypropylene (PP) is currently studied as a cement‐reinforcement fiber that could potentially be substituted for asbestos because of its resistance to prolonged high‐temperature curing. The higher the isotacticity of the PP fiber is, the higher the tensile modulus and breaking strength of the cured fiber are. The PP fiber that exhibits a isotacticity of 99.6% (XI) and draw ratio of 6.0 retains a tensile modulus of 4.23 GPa, even after high‐temperature curing at 175°C for 5 h. PP fiber is cut into 6‐mm lengths and dispersed throughout a cement mixture to prepare a reinforced cement composite. The mixture is cured in an autoclave at 175°C for 5 h. The Charpy impact strength and flexural strength of the obtained cement composite tends to increase with increasing PP isotacticity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 981‐988, 2013  相似文献   

7.
In this article, experimental results are presented investigating the response of glass fiber composites subjected to low velocity impact loading. The resulting load‐displacement traces and deformation modes have been used to validate a number of numerical models. Here, finite element models have been developed to predict the impact behavior of the composite plates. Damage in the woven glass‐fiber reinforced composite plate was modeled using the Hashin failure criteria. The influence of target size, projectile size, projectile shape, and striking location on the impact response of the composites was investigated. In general, good agreement was obtained in terms of the load‐displacement traces and the failure modes in the composite plates. It has been shown that the perforation energy increases rapidly with target thickness, with the numerical results closely agreeing with the experimental data. Similarly, the energy required to perforate the composite targets increases with increasing projectile diameter, with the failure mechanisms being similar in all cases. Finally, increasing the bluntness of the impactor resulted in a significant increase in the energy to perforate these targets. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

8.
Composites in load‐bearing applications are often exposed to off‐axis loads. For plant fiber composites (PFCs) to be seriously and readily considered in structural applications, knowledge and reliable prediction of their response to off‐axis loads is critical. This article (i) characterizes the stress–strain response, (ii) investigates the tensile properties, and (iii) analyses the fracture modes, of unidirectional flax‐polyester composites subjected to off‐axis tensile loading. A key finding of this study is that due to the nonlinear stress–strain response of PFCs, the apparent stiffness of the composite reduces by ∼30% in the strain range of 0.05 to 0.25%. In addition, through cyclic tests on the composites, the elastic strain limit is found to be only ∼0.15%. This has major implications on the strain range to be used for the determination of the composite elastic Young's modulus. Consequently, it is proposed that the tensile modulus for PFCs should be measured in the strain range of 0.025 to 0.100%. Through comparison with experimental data, conventional composite micromechanical models are found to be adequate in quantitatively describing the tensile behavior of off‐axis loaded PFCs. The application of such models has also enabled the determination of, otherwise difficult to measure, material properties, such as fiber shear and transverse modulus. Off‐axis loaded PFCs fail by three distinct fracture modes in three different off‐axis ranges; each fracture mode produces a unique fracture surface. POLYM. COMPOS. 2012. © 2012 Society of Plastics Engineers  相似文献   

9.
The effect of the matrix morphology on the fatigue behavior of a continuous glass fiber/polypropylene (GF/PP) composite system was studied by means of stress‐life and mode II cyclic delamination tests. The stress‐life behavior of a GF composite is considerably affected by the nature of the matrix. A two‐stage fatigue damage curve was observed in the composite made with a PP matrix, whereas a three‐stage curve was observed in the composite made with a thermoset polyester matrix. For a fatigue stress higher than 50% of the yield stress, the PP matrix composite showed a considerably longer fatigue life than the thermoset polyester matrix composite. Mode II cyclic delamination tests showed that the morphology itself of the PP matrix also played an important role. Higher fatigue delamination growth rates, at given strain energy release rates, and lower strain energy release rates at failure were obtained for a composite showing a coarse spherulitic morphology and well‐marked interspherulitic regions than for a composite showing a finer spherulitic morphology and less‐marked interspherulitic regions. While the fatigue mode of the composite with a coarse spherulitic morphology was interspherulitic, that of the composite with a finer spherulitic morphology was transpherulitic.  相似文献   

10.
Ballistic impact performance of aramid fiber fabric‐epoxy and aramid fiber fabric‐polypropylene (PP)‐based composite laminates has been studied against 7.62 mm armor piercing projectiles. Twaron® was used as aramid fiber fabric in the composites. Role of matrix on the damage pattern has been investigated by impacting the composites of different thickness with projectiles having different strike velocity (SV). Ballistic limit (BL) for each composite has been estimated through correlation of SV and residual velocity (RV) of the projectile by usual V50 method. Ballistic limit was found to vary linearly with composite laminate thickness. Twaron®‐PP composites exhibited higher ballistic limit compared toequivalent thickness of Twaron®‐epoxy composites. Epoxy‐based composites exhibited localized damage mode compared to a global mode of failure in PP‐based composites. Scanning electron microscopy revealed that fibers in Twaron®‐epoxy composites failed largely by shear while tensile mode of failure was observed for Twaron®–PP composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

11.
Abstract

Natural fibers are potentially a high‐performance non‐abrasive reinforcing fiber source. In this study, pulp fibers [including bleached Kraft pulp (BKP) and thermomechanical pulp (TMP)], hemp, flax, and wood flour were used for reinforcing in polypropylene (PP) composite. The results show that pulp fibers, in particular, TMP‐reinforced PP has the highest tensile strength, possibly because pulp fibers were subjected to less severe shortening during compounding, compared to hemp and flax fiber bundles. Maleic‐anhydride grafted PP (MAPP) with high maleic anhydride groups and high molecular weight was more effective in improving strength properties of PP composite as a compatiblizer. Coupled with 10% glass fiber, 40% TMP reinforced PP had a tensile strength of 70 MPa and a specific tensile strength comparable to glass fiber reinforced PP. Thermomechanical pulp was more effective in reinforcing than BKP. X‐ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to aid in the analysis. Polypropylene with high impact strength was also used in compounding to improve the low‐impact strength prevalent in natural fiber‐reinforced PP from injection molding.  相似文献   

12.
Composites with different jute fabric contents and polypropylene (PP) were prepared by compression molding. The composite tensile modulus increased as the fiber content increased, although the strain at break decreased due to the restriction imposed on the deformation of the matrix by the rigid fibers. Moreover, and despite the chemical incompatibility between the polar fiber and the PP matrix, the tensile strength increased with jute content because of the use of long woven fibers. The interfacial adhesion between jute and PP was improved by the addition of different commercial maleated polypropylenes to the neat PP matrix. The effect of these coupling agents on the interface properties was inferred from the resulting composite mechanical properties. Out‐of‐plane instrumented falling weight impact tests showed that compatibilized composites had lower propagation energy than uncompatibilized ones, which was a clear indication that the adhesion between matrix and fibers was better in the former case since fewer mechanisms of energy propagation were activated. These results are in agreement with those found in tensile tests, inasmuch as the compatibilized composites exhibit the highest tensile strength. Scanning electron microscopy also revealed that the compatibilized composites exhibited less fiber pullout and smoother fiber surface than uncompatibilized ones. The thermal behavior of PP–compatibilizer blends was also analyzed using differential scanning calorimetry, to confirm that the improvements in the mechanical properties were the result of the improved adhesion between both faces and not due to changes in the crystallinity of the matrix. Copyright © 2006 Society of Chemical Industry  相似文献   

13.
This study characterizes surface treated classic type fiber metal laminates (FMLs) interlaminar shear strength (ILSS) based on a glass mat reinforced polyphenylene sulphide composite and an aluminum alloy. The effect of concentration of γ‐glycidoxypropyltrimethoxysilane surface treatment on ILSS of adhesive bonding between aluminum sheet and composite laminates has been investigated. After determining the silane concentration, novel FML material is manufactured using a compression moulding process which involves aluminum sheets with different circular hole perforations (Array type A and B) with two circular hole diameters (ϕ3 and ϕ5 mm) and two total hole area/closed area: 0.05 and 0.06) to develop mechanical interlocking between aluminum layers and composite laminates. Tensile tests are performed to investigate the effect of different circular hole perforations on ILSS properties of FMLs. Test results show that ILSS is improved with increasing the circular hole diameter and decreased with the number of holes as correlated with undrilled FMLs. Failure modes, damage initiation, and progression of FMLs with different open hole perforations are determined with optical microscope. POLYM. COMPOS., 37:963–973, 2016. © 2014 Society of Plastics Engineers  相似文献   

14.
The tensile behavior of unidirectional glass‐fiber polymer composites was studied at three different strain rates. Tests were performed on 0° specimens as well as off‐axis specimens at 15°, 30°, 45°, and 90° with respect to the axis of tension. The nonlinear material behavior was modeled through a viscoplastic model based on a one‐parameter plastic potential function developed elsewhere. An effective stress‐effective plastic strain curve was constructed for each strain rate imposed and fitted with a power law. Thus, the tensile stress–strain curve could be predicted in a very accurate way for every strain rate examined and various types of off‐axis specimens. The strain rate‐dependent behavior is described through a scaling law, assuming that a model parameter is a function of the imposed strain rate. Predictions of the material response at strain rates different from those initially studied were found to be successful. POLYM. COMPOS., 26:572–579, 2005. © 2005 Society of Plastics Engineers  相似文献   

15.
Polypropylene/jute fiber (PP‐J) composites with various concentrations of viscose fibers (VF) as impact modifiers and maleated polypropylene (MAPP) as a compatibilizer have been studied. The composite materials were manufactured using direct long fiber thermoplastic (D‐LFT) extrusion and compression molding. The effect of fiber length, after the extrusion process, on composites mechanical performance and toughness was investigated. The results showed that the incorporation of soft and tough VF on the PP‐J improved the energy absorption of the composites. The higher impact strength was found with the addition of 10 wt % of the impact modifier, but the increased concentration of the impact modifier affected the tensile and flexural properties negatively. Similarly, HDT values were reduced with addition of viscose fibers whereas the addition of 2 wt % of maleated polypropylene significantly improved the overall composite properties. The microscopic analysis clearly demonstrated longer fiber pullouts on the optimized impact modified composite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41301.  相似文献   

16.
An open hole flexural strength and impact energy of flax yarn‐reinforced polypropylene (PP) composites were studied in this work. Highest flexural strength and strength retention were observed for axial (06) and cross‐ply (0/90/0)s laminates, respectively, while also examining the influence of laminate lay‐up and open hole size on flexural strength. It was found that maleic anhydride‐grafted polypropylene (MAPP)‐treated composite laminates achieved marginal improvement on flexural strength for all kinds of laminate lay‐up. Off‐axial laminates (±456) showed a good strength retention for open hole laminates after MAPP treatment. The fractography study confirmed microbuckling and matrix crack propagation over the compressive and tensile side of the laminate, respectively. Furthermore, severe surface damage was detected over the tensile side of 8‐mm hole size laminates. Impact test of the flax/PP laminates showed slight improvement by MAPP treatment. High‐ and low‐impact energy was experienced for axial and off‐axial laminates. The damaged impact sample shows evidence of fiber pull‐out for untreated flax yarn reinforced laminates. POLYM. COMPOS., 34:1912–1920, 2013. © 2013 Society of Plastics Engineers  相似文献   

17.
以碳纤维(CF)增强聚丙烯(PP)作为基础材料,添加空心玻璃微珠(GB)对其进行共混改性,研究GB的加入量对其流动性能和力学性能的影响。转矩流变性能、拉伸性能、冲击性能和微观形貌的分析与研究结果表明,GB对PP/CF复合材料具有增强增韧的作用。  相似文献   

18.
In the present article, a series of commercial‐grade polypropylenes (PP) filled with different contents of short basalt fibers were studied. This composite material presented deterioration of both mechanical characteristics, for example, stress and strain at yield with increasing of the fiber content. On the other hand, the impact strength was fourfold higher than that of unfilled PP. A poor adhesion between the PP matrix and the basalt fibers was detected. This is why interfacial interactions were promoted by the adding of poly(propylene‐g‐maleic anhydride) (PP‐g‐MA). It was observed that the tensile properties of the obtained materials and their impact strengths increased significantly with increasing of the amount of PP‐g‐MA in the blend. The adhesion improvement was confirmed by scanning electron microscopy as well. Fourier transform infrared spectroscopy was applied to assess if any chemical interactions in the system PP/PP‐g‐MA/basalt fibers exist. Dynamic mechanical thermal analysis data showed an increase of the storage modulus with increasing fiber content. The conclusion was made that the modification of the PP matrix led to a higher stiffness but its value remained constant, irrespective of the PP‐g‐MA content. With increasing fiber content, damping in the β‐region decreased, but increase of the coupling agent content restored its value back to that of PP. The loss modulus spectra presented a strong influence of fiber content on the α‐relaxation process of PP. The position of the peaks of the above‐mentioned relaxation processes are discussed as well. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 523–531, 1999  相似文献   

19.
This study describes the effect of fiber length and compatibilizer content on notched izod impact and fracture toughness properties. Long fiber polypropylene (LFPP) pellets of different sizes were prepared by extrusion process using a new radial impregnation die, and subsequently, pellets were injection molded as described in previous publication 1 . The content of glass fiber reinforcement was maintained same for all compositions. Maleic‐anhydride grafted polypropylene (MA‐g‐PP) was chosen as a compatibilizer to increase the adhesion between glass fiber and PP matrix and its content was maintained at 2 wt%. Notched izod impact property was studied for LFPP composites prepared with and without compatibilizer for different pellet sizes. Failure mechanism due to sudden impact was analyzed with scanning electron micrographs and was correlated with impact property of LFPP composites. Fracture and failure behavior of injection molded LFPP composite were studied and relationship between fracture toughness and microstructure of LFPP composite was analyzed. The microstructure of the composites was characterized by the dimensionless reinforcing effectiveness parameter, which accounts for the influence of fiber layer structure, fiber alignment, fiber volume fraction, fiber length distribution, and aspect ratio. Matrix stress condition factor and energy absorption ratio were determined for LFPP composites prepared with and without compatibilizer. Failure mechanism of both the matrix and fiber, revealed with SEM images, were discussed. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

20.
采用热压工艺制造聚丙烯(PP)/甘蔗皮纤维复合材料,并研究其拉伸性能。研究热压温度为175℃、压力为2 MPa、时间15 min工艺条件下纤维粒径大小和质量分数对复合材料拉伸强度和拉伸弹性模量的影响。结果表明:在甘蔗皮纤维质量分数为40%条件下,复合材料拉伸性能随着粒径减小呈现先增加后减少的趋势,当纤维粒径为40~60目(0.45~0.3 mm)时材料拉伸强度最大,为8.58 MPa,此时弹性模量为2.44 GPa;在相同纤维粒径40~60目条件下,纤维质量分数为40%时PP复合材料拉伸强度最大,纤维质量分数为50%时PP复合材料拉伸弹性模量最大,达到2.65 GPa。根据实验结果,甘蔗皮纤维增强PP复合材料在纤维粒径为40~60目、质量分数在40%时综合拉伸性能最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号