首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new special finite element formulation and code are developed to simulate the two‐dimensional flow and compaction process during the autoclave processing of complex fiber‐reinforced thermosetting composite laminates. The numerical model is based on the Biot's consolidation principle, the fluid continuity equation, and Darcy's law. The simulation is performed for Hercules AS4/3501‐6 laminates and the predicted results are in good agreement with the results available in the literature. The laminate thickness and fiber volume fraction distribution of cured laminates are investigated from both the experiments and the simulations for T700S/5228 laminates. The simulations and experimental results are in good agreement for all the studied cases. A significantly uneven degree of consolidation along the laminate thickness direction is observed, and it is necessary to optimize the cure cycle to get uniformly compact and good quality laminates. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

2.
In the previous study, the finite element formulation has been developed by our group based on two‐dimensional resin flow and fiber compaction model. Good agreement between simulations and experimental results was found under the one‐dimensional flow condition. In this article, the two‐dimensional model was used to simulate the consolidation of angle‐bended laminates with the convex tool in autoclave process. The effects of material properties on the consolidation were studied. It was found that the fiber bed shear modulus significantly affects the compaction behavior in the corner section of angle‐bended laminate, the fiber bed compaction property decide the laminate deformation, and the resin viscosity and fiber bed permeability affect the rate of laminate compaction and consolidation time. The angle‐bended T700/BMI QY8911‐Ilaminates were manufactured in autoclave process. The experimental data validate the numerical simulation method for the consolidation of the angle‐bended laminates. These results are greatly helpful for the optimization of processing parameters, improvement of composite parts quality, and reduction of the fabrication cost. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

3.
A design sensitivity method is used to find optimal autoclave temperature and pressure histories for curing of thermoset-matrix composite laminates. The method uses a finite element simulation of the heat transfer, curing reaction, and consolidation in the laminate. Analytical sensitivities, based on the direct differentiation method, are used within the finite element simulation to find the design sensitivities, i.e., the derivatives of the objectives function and the constraints with respect to the design variables. Standard gradient-based optimization techniques are then used to systematically improve the design, until an optimal process design is reached. In this study the objective is to minimize the total time of the cure cycle, while the constraints include a maximum temperature in the laminate (to avoid thermal degradation) and a maximum deviation of the final fiber volume fraction from its target value (to achieve proper consolidation). The simulations of curing process are performed for EPON 862/W epoxy under a conventional cure cycle, for both thin and thick parts. Time-optimal cure cycles are found using the optimization program. Simulations of fast-curing cycles are also examined. The optimal cycles are similar in form to conventional cure cycles, but give substantially shorter cure times. The entire scheme works automatically and efficiently, simultaneously adjusting multiple design variables at each iteration.  相似文献   

4.
An open hole flexural strength and impact energy of flax yarn‐reinforced polypropylene (PP) composites were studied in this work. Highest flexural strength and strength retention were observed for axial (06) and cross‐ply (0/90/0)s laminates, respectively, while also examining the influence of laminate lay‐up and open hole size on flexural strength. It was found that maleic anhydride‐grafted polypropylene (MAPP)‐treated composite laminates achieved marginal improvement on flexural strength for all kinds of laminate lay‐up. Off‐axial laminates (±456) showed a good strength retention for open hole laminates after MAPP treatment. The fractography study confirmed microbuckling and matrix crack propagation over the compressive and tensile side of the laminate, respectively. Furthermore, severe surface damage was detected over the tensile side of 8‐mm hole size laminates. Impact test of the flax/PP laminates showed slight improvement by MAPP treatment. High‐ and low‐impact energy was experienced for axial and off‐axial laminates. The damaged impact sample shows evidence of fiber pull‐out for untreated flax yarn reinforced laminates. POLYM. COMPOS., 34:1912–1920, 2013. © 2013 Society of Plastics Engineers  相似文献   

5.
The physical and hence mechanical properties of carbon fiber reinforced epoxy resin are affected by the curing conditions used in their manufacture. The relationship between the cure temperature and pressure and the density, fiber volume fraction, and the void content of cured laminates, was investigated. For the unidirectional 914C prepreg material used, an optimum cure temperature was found which gave maximum fiber volume fraction and composite density, and minimum void content. This behavior is related in the paper to resin flow and cure characteristics. A linear relationship between cure pressure and fiber volume fraction is reported and explained by reference to the void content of the laminates. It is concluded that in-house trials are required to determine the optimum size of the processing window for specific systems and components.  相似文献   

6.
This article presents the low‐velocity impact response of fiber metal laminates, based on aluminum with a polymer composite, reinforced with carbon and glass fibers. The influence of fiber orientations as well as analysis of load‐time history, damage area and damage depth in relation to different energy levels is presented and discussed. The obtained results made it possible to determine characteristic points, which may be responsible for particular stages of the laminate structure degradation process: local microcracks and delaminations, leading to a decrease in the stiffness of the laminate, as well as further damage represented by laminate cracks and its perforation. The damage mechanism of fiber metal laminates is rather complex. In case of carbon fiber laminates, a higher tendency to perforation was observed in comparison to laminates containing glass fibers. Delaminations in composite interlayers and at the metal/composite interface constitute a significant damage form of fiber metal laminates resulting from dynamic loads. Fiber metal laminates with glass fibers absorb energy mainly through plastic deformation as well as through delamination initiation and propagation, whereas laminates containing carbon fibers absorb energy for penetration and perforation of the laminate. POLYM. COMPOS. 37:1056–1063, 2016. © 2014 Society of Plastics Engineers  相似文献   

7.
Advanced fiber reinforced polymer composites have been increasingly used in various structural components. One of the important processes to fabricate high performance laminated composites is an autoclave assisted prepreg lay-up. Since the quality of laminated composites is largely affected by the cure cycle, selection of the cure cycle for each application is important and must be optimized. Thus, some fundamental model of the consolidation and cure processes is necessary to properly select the suitable parameters for each application. This study applied the theory of consolidation and flow in a porous medium to provide a general model for the three-dimensional consolidation process of the laminates with fibers reinforced in multi-directions. Based on the model analysis, one can predict the pressure, velocity, and laminate thickness during consolidation process, which, as coupled with the curing analysis, can be used to properly select the cure cycle for applications of laminated composites.  相似文献   

8.
A process window providing guidelines to minimize internal stress levels and to prevent void formation during cure of thermoset composite materials is presented. A model taking into account the applied pressure and the level of stress borne by the fiber assembly was introduced to calculate the hydrostatic internal stress state in the resin during cure. Based on the fundamental mechanisms of matrix shrinkage and evolution of viscoelastic properties under the given processing conditions, the internal stress in the resin was calculated as a function of fiber volume fraction, fiber stacking sequence, applied pressure and resin conversion. This level of stress is compared to a criterion for void initiation in the resin. A process window was hence constructed for preventing void formation during cure. Composite laminates with different stacking sequences and fiber volume fractions were cured with different applied pressures within and out of the process window boundaries. The composite void contents were measured and correlated perfectly with the process boundaries. This process window construction taking into account the material vis‐coelastic properties and the composite architecture is a unique tool for determining optimum process condition of composite laminates.  相似文献   

9.
Commingled fabrics composed of yarns containing both the reinforcement and the matrix in fiber form are an innovative preform for thermoplastic composite materials. The material is consolidated into a rigid structure by the application of heat and pressure. A mathematical model of the consolidation process for commingled fabrics has been developed. The model predicts the variation of laminate thickness, fiber volume fraction, and void content during the consolidation process as well as the time required to reach full consolidation. Materials composed of initially separate, commingled or cowoven fiber bundles are considered. The influence of fiber velocity induced by compaction on the flow of matrix is accounted for. An equivalence factor has been derived so that a one-dimensional flow analysis may be used to model the impregnation of elliptical bundles of varying aspect ratio. This permits an analytic solution to the governing equation for fiber bundle impregnation. The model was utilized to examine the influence of various material and processing parameters on consolidation behavior.  相似文献   

10.
This article presents results from over 100 experimental autoclave curing fiber-glass-epoxy composite laminate curing runs. The primary objective was to verify shrinking horizon model predictive control—SHMPC—for thickness and void content control, using readily available secondary measurements. The secondary objective was to present and analyze the extensive experimental results obtained through this verification. Seven series of curing runs (16 per series) were performed, with cure settings governed by partial- or full-factorial orthogonal array based design of experiments. Through t-tests and two-way analysis of variance, it was found that pressure magnitude had the largest influence on laminate thickness and void content, while first hold duration/temperature, pressure application duration, and run delay influenced void content more than thickness. Thinner laminates with lesser void contents resulted from pressure application before the second temperature ramp. Prepreg age also affected thickness and void content. Photomicrographs revealed not one large void, but void clusters. Interrupted autoclave cure cycles revealed that significant laminate thickness reduction occurred during all curing cycle stages. The percentage of resin weight loss through laminate sides increased with pressure magnitude and application duration. Ten test curing runs indicated that SHMPC met difficult thickness targets while minimizing void content.  相似文献   

11.
Advanced fiber‐reinforced polymer composites have been increasingly used in various structural components. One of the important processes to fabricate high‐performance laminated composites is an autoclave‐assisted prepreg lay‐up. Since the quality of laminated composites is largely affected by the cure cycle, selection of the cure cycle for each application is important and must be optimized. Thus, some fundamental model of the consolidation and cure processes is necessary to properly select the suitable parameters for each application. This article is concerned with the “flow‐compaction” model during the autoclave processing of composite materials. By using a weighted residual method, a two‐dimensional finite element formulation for the consolidation process of thick thermosetting composites is presented and the corresponding finite element code is developed. Numerical examples, including comparison of the present numerical results with one‐dimensional and two‐dimensional analytical solutions, are given to indicate the accuracy and effectiveness of the finite element formulation. In addition, a consolidation simulation of AS4/3501‐6 graphite/epoxy laminate is performed and is compared with the experimental results available in the literature. POLYM. COMPOS., 26:813–822, 2005. © 2005 Society of Plastics Engineers  相似文献   

12.
A new cocured process called coresin film infusion (co‐RFI) process, which combines RFI process and prepreg/autoclave process, was introduced and four kinds of commercial carbon fiber prepreg material systems and a kind of resin film were applied to fabricate co‐RFI laminates. The compatibility between the resin film and the prepreg matrix and the application of co‐RFI process were investigated based on the resin flowability, glass transition temperature of cured resin, processing quality of laminate, and variation in resin modulus on cocured interphase region measured by nanoindentation. Furthermore, mode I (GIC), mode II (GIIC) delamination fracture toughness, and flexural strength and modulus were measured to evaluate the mechanical properties of cocured laminates with different prepreg materials. The experimental results show that thickness and fiber volume fraction of co‐RFI laminates with the four kinds of prepreg materials are similar to those of prepreg laminates and RFI laminate with acceptable differences. In addition, there are no obvious defects in co‐RFI laminates. Moreover, the reduced modulus of resin at cocured interface and glass transition temperature values of the mixed resin reflect good compatibility between prepreg matrix resin and RFI resin. The GIC, GIIC values, and flexural performances of cocured laminates lie between and even exceed those of prepreg laminates and RFI laminates, indicating no weakening effect in the cocured interface. Therefore, the co‐RFI process is believed to effectively fabricate composite with low cost and it can be applied using various prepreg systems. POLYM. COMPOS., 34:2008–2018, 2013. © 2013 Society of Plastics Engineers  相似文献   

13.
Sluggish and narrow process window of phthalonitrile resin has tremendously limited their wide applications. In this work, a novel phthalonitrile containing benzoxazine (4,4′‐(((propane‐2,2‐diylbis (2H‐benzo [e] [1,3]oxazine‐6,3 (4H)‐diyl) bis(3,1‐phenylene))bis(oxy)) diphthalonitrile, BA‐ph) with ortho‐diallyl bisphenol A (DABPA) was investigated. The processing window of the BA‐ph/DABPA blends were found from 50°C to 185°C, which was significantly broader than that of the pure BA‐ph (120–200°C). The composites were prepared through a curing process involving sequential polymerization of allyl moieties, ring‐opening polymerization of oxazine rings and ring‐forming polymerization of nitrile groups. BA‐ph/DABPA/GF(glass fiber) composite laminates were prepared in this study, and the composite laminate with BA‐ph/DABPA molar ratio of 2/2 showed an outstanding flexural strength and modulus of 560 MPa and 37 GPa, respectively, as well as a superior thermal and thermo‐oxidative stability up to 408 and 410°C. These outstanding properties suggest that the BA‐ph/DABPA/GF composites are suitable candidates as matrices for high performance composites. POLYM. ENG. SCI., 56:150–157, 2016. © 2015 Society of Plastics Engineers  相似文献   

14.
基于有效应力原理与达西渗流定律,建立了厚复合材料层板流动-压实过程的多场耦合有限元数值模型,通过与厚单向板试验结果的对比,验证了模型的正确性。建立了含界面层的厚正交层合板流动-压实计算模型,分析了垂直于层间界面方向的界面渗透率对正交层合板流动-压实过程的影响。通过与同等厚度单向板的分析结果对比表明,当不同方向铺层层间界面渗透率高时,厚正交层合板的流动-压实过程几乎与相同厚度单向板的流动-压实过程相同。但当层间界面的渗透率低时,会阻碍内部树脂的流动,导致正交层合板内部纤维体积含量提升慢,且越靠近内部,界面渗透率的影响越明显,最终在界面处纤维含量出现明显的跳跃分布。  相似文献   

15.
The ultraviolet transmission of various reinforcement textiles was quantified experimentally for the case of incidence of light normal on the fabric plane, and correlated with the curing behavior of laminates incorporating these fabrics. For glass fiber fabrics wetted with polyester resin, light is transmitted through the voids between the fiber bundles and through the fiber bundles. Multiscale modeling of the fabric geometry allows the local transmission to be estimated and the average total transmission to be quantified. The results of curing experiments suggest that the degree of through‐cure achieved after a given cure time is correlated to the fabric transmission. Both are determined by the laminate thickness, the fabric architecture and the fiber volume fraction, i.e., the fiber packing density. While the transmission is reduced by the presence of the reinforcement fabrics, the total resin volume is reduced when compared with that of a resin only sample of the same thickness. A lower radiation dose is sufficient for curing, which partially compensates for the effect of reduced transmission. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

16.
Unidirectional (UD) composite laminates based on glass fibers (GF) and high‐performance polythylene fibers (PEF) were prepared with partially polymerized methyl methacrylate (MMA) at room temperature, followed by heating at 55°C (well below the softening point of PEF) for 2 h. The tensile strength, modulus of elasticity, fiber efficiency and strength efficiency of both the composite laminates, loaded parallel to the fibers, at the same volume fraction range, were investigated. All the properties were compared between the two composite laminates. It was observed that the measured tensile strength and modulus of elasticity deviated from the values calculated from the Rule of Mixture (ROM). The deviation was minimal at the lower volume fraction of fibers, and increased with the fiber volume. An interesting feature that was observed was that the efficiencies of PEF‐reinforced composite was higher than that of the GF‐reinforced composite at the same volume fraction of the fibers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1489–1493, 2000  相似文献   

17.
This investigation involves the study of accelerated environmental aging in two polymer composite laminates reinforced by hybrid fabrics based on carbon, Kevlar and glass fibers. Composite laminate configurations are defined as a laminate reinforced with E‐glass fiber and Kevlar 49 fiber hybrid fabric (GK) and another laminate reinforced with E‐glass fiber and AS4 carbon fiber hybrid fabric (GC). Both laminates were impregnated with epoxy vinyl ester thermosetting resin (Derakane 470‐300) consisting of four layers. Morphological studies (photo‐oxidation process and structural degradation) of environmental aging were conducted, in addition to comparative studies of the mechanical properties and fracture characteristics under the action of uniaxial tensile and three‐point bending tests in specimens in the original and aged conditions. With respect to uniaxial tensile tests for both laminates, good mechanical performance and little final damage (small loss of properties) was caused by the aging effect. However, for the three‐point bending tests, for both laminates, the influence of aging was slightly higher for all parameters studied. The low structural deterioration in the laminates is attributed to the high performance with the heat of the matrix (Derakane 470‐300) and the characteristics of the hybrid fabric, exhibiting fiber/matrix interface quality. POLYM. ENG. SCI., 56:657–668, 2016. © 2016 Society of Plastics Engineers  相似文献   

18.
This study evaluates the feasibility of designing and incorporating a cure on demand system into the resin infusion between double flexible tooling (RIDFT) process, using ultraviolet (UV) light for the curing of composite laminates. This work set out to develop a process for the RIDFT that would eliminate or reduce the inflexibility in the current production process, resulting in shortened production cycle times. UV cured laminates were produced at a fraction of the time required for catalyst cured laminates. Mechanical and rheological tests were performed on each of the UV cured laminates produced. The results were referenced against those obtained for laminates produced using a catalyst curing system to determine their overall quality. Experimental results from the tensile and rheological tests inferred that the UV cured laminates yielded material properties that were comparable and in a few instances slightly better than that of thermally cured laminates. POLYM. COMPOS., 27:417–424, 2006. © 2006 Society of Plastics Engineers  相似文献   

19.
Curing of polymer matrices by ultraviolet (UV) irradiation can be applied to a variety of processes in the production of composite components, as long as the component can be directly irradiated. Wet lay‐up techniques, vacuum infusion type processes with UV‐transparent membranes, filament winding, and prepreg processes have been adapted to UV curing. Unlike in thermal curing, the curing time is in the order of magnitude of minutes rather than hours, which means a significant reduction in cycle time. The radiation can be generated by a variety of sources suitable for various specific applications and different curing strategies. The most frequently used radiation sources are mercury arc lamps. Because of the absorption of radiation passing through matter, the thickness of laminates for efficient application of UV curing is limited. The curing mechanism is either radical polymerization for acrylate‐based resins or cationic polymerization for epoxies and vinyl ethers. The properties of the UV‐cured polymer matrix are determined by the cross‐linking density. This depends on the type and concentration of the photoinitiator and of the (optional) diluents, the intensity and the duration of the irradiation, and the temperature at which the curing process takes place. POLYM. COMPOS., 27:119–128, 2006. © 2006 Society of Plastics Engineers.  相似文献   

20.
In conventional processing, thermal gradients cause differential curing of thick laminates and undesirable outside‐in solidification. To reduce thermal gradients, thick laminates are processed at lower cure temperatures and heated with slow heating rates, resulting in excessive cure times. Microwaves can transmit energy volumetrically and instantaneously through direct interaction of materials with applied electromagnetic fields. The more efficient energy transfer of microwaves can alleviate the problems associated with differential curing, and the preferred inside‐out solidification can be obtained. In this work, both microwave curing and thermal curing of 24.5 mm (1 inch) thick‐section glass/epoxy laminates are investigated through the development of a numerical process simulation and conducting experiments in processing thick laminates in a conventional autoclave and a microwave furnace. Outside‐in curing of the autoclave‐processed laminate resulted in visible matrix cracks, while cracks were not visible in the microwave‐processed laminate. Both numerical and experimental results show that volumetric heating due to microwaves promotes an inside‐out cure and can dramatically reduce the overall processing time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号