共查询到19条相似文献,搜索用时 78 毫秒
1.
模糊kNN在文本分类中的应用研究 总被引:1,自引:0,他引:1
自动文本分类是根据已经分配好类标签的训练文档集,来对新文档分配类标签.针对模糊kNN算法用于文本分类的性能进行了一系列的实验研究与分析.在中英文两个不同的语料集上,采用四种著名的文本特征选择方法进行特征选择,对改进的模糊kNN方法与经典kNN及目前广泛使用的基于相似度加权的kNN方法进行实验比较.结果表明,在不同的特征选择方法下,该算法均能削弱训练样本分布的不均匀性对分类性能的影响,提高分类精度,并且在一定程度上降低对k值的敏感性. 相似文献
2.
本文研究了文档频率DF、信息增益IG、互信息MI、x2分布(CHI)、期望交叉熵、优势率、文本证据权七种不同的特征选取方法。针对DF对高频词过于依赖,以及MI,IG和CHI对低频词过于依赖这一特点,试验了将它们组合起来形成DF—MI,DF-IG两种组合式特征选择方法,同时针对DF的特点提出了新的特征选取方法DFR,用KNN分类器试验了几种组合方法和DFIK方法,实验结果表明DFIK较DF—MI、DF—IG对分类效果有明显的提高,而组合特征选取方法较单个特征选取方法对分类器的分类效果有了很大的提高。 相似文献
3.
随着Internet上文档信息的迅猛发展,文本分类成为处理和组织大量文档数据的关键技术.由于χ2统计量能很好地体现词和类别之间的相关性,因此成为特征选择中常用的评估函数.本文分析了χ2统计量在特征选择和分类决策阶段的性质,提出了一种新的基于χ2统计量的相似度定义,并结合基于两次类别判定的快速搜索算法,改进了传统的kNN算法.实验结果显示基于χ2统计量的改进kNN文本分类算法能大大减少kNN算法的分类时间,并提高了kNN算法的准确率和召回率. 相似文献
4.
5.
6.
随着Internet上文档信息的迅猛发展,文本分类成为处理和组织大量文档数据的关键技术.由于Χ^2统计量能很好地体现词和类别之闻的相关性,因此成为特征选择中常用的评估函数.本文分析了Χ^2统计量在特征选择和分类决策阶段的性质,提出了一种新的基于Χ^2统计量的相似度定义,并结合基于两次类别判定的快速搜索算法,改进了传统的kNN算法,实验结果显示基于Χ^2统计量的改进kNN文本分类算法能大大减少kNN算法的分类时间,并提高了kNN算法的准确率和召回率. 相似文献
7.
本文将KD-Tree应用到KNN文本分类算法中,先对训练文本集建立一个KD-Tree,然后在KD-Tree中搜索测试文本的所有祖先节点文本,这些祖先节点文本集合就是待测文本的最邻近文本集合,与测试文本有最大相似度的祖先的文本类型就是待测试文本的类型,这种算法大大减少了参与比较的向量文本数目,时间复杂度仅为O(log2N)。实验表明,改进后的KNN文本分类算法具有比传统KNN文本分类法更高的分类效率。 相似文献
8.
本文研究了文档频率DF、信息增益IG、互信息MI、x2分布(CHI)、期望交叉熵、优势率、文本证据权七种不同的特征选取方法.针对DF对高频词过于依赖,以及MI,IG和CHI对低频词过于依赖这一特点,试验了将它们组合起来形成DF-MI,DF-IG两种组合式特征选择方法-同时针对DF的特点提出了新的特征选取方法DFR-用KNN分类器试验了几种组合方法和DFR方法-实验结果表明DFR较DF-MI、DF-IG对分类效果有明显的提高,而组合特征选取方法较单个特征选取方法对分类器的分类效果有了很大的提高. 相似文献
9.
运用人工智能相关技术实现海量数据文本的自动化分类识别,将有限的人力从海量数据中解放出来,已成为促进工作发展的重要途径.主要运用SVM文本分类技术对数据文本进行自动筛选和智能分类,详细介绍了SVM文本分类方法的系统结构、分词、特征选择、评估方法、模型训练和分类识别的过程,并针对语料库中的大量文本进行分类实验.结果表明,该方法具有较好的分类效果. 相似文献
10.
11.
12.
文本自动分类技术在提高文本信息利用的有效性和准确性上具有重要的现实意义和广阔的应用前景。随着Internet上维吾尔文信息的迅速发展,维吾尔文文本分类成为处理和组织这些大量文本数据的关键技术。研究维吾尔文文本分类相关技术和方法,针对维吾尔文文本在向量空间模型表示下的高维性,本文采用词干提取和χ2统计量相结合的方法对表示空间进行降维。采用SVM算法构造了维吾尔文文本分类器。针对维吾尔文文本分类语料进行的实验结果表明,SVM分类器的MacroF1值达到了84.6%,明显好于kNN方法。 相似文献
13.
文本分类作为机器学习和信息检索之间的交叉学科,涉及到多个领域的技术。它的完善有赖于各个相关领域的技术发展和提高,该文介绍了文本分类过程中的各个关键技术和存在的问题,讨论了文本表示模型、分类算法、分类器性能评价原理和方法,最后并对今后的发展进行了展望。 相似文献
14.
一种快速高效的文本分类方法 总被引:7,自引:1,他引:7
论文讨论了两个常用的文本分类算法:向量空间法和k近邻方法。前者速度快,但是分类精度通常不能令人满意。后者则相反,它在分类时要花费更多的时间,但分类效果要好很多。通过综合它们的优点提出了一个新的文本分类算法:向量空间法和k近邻的组合方法。试验表明,新算法能在较少的时间复杂度上达到甚至超过k近邻的分类效果。 相似文献
15.
16.
基于改进TFIDF算法的文本分类研究 总被引:1,自引:0,他引:1
由于文本分类在信息检索、邮件过滤、网页分类、个性化推荐等领域有着广泛的应用价值,所以自文本分类的概念提出以来,受到了学者们的广泛关注。在文本分类的研究中,学者们运用了很多方法,其中TFIDF是文档特征权重计算的最常用算法之一,但是传统的TFID算法忽略了特征项在类内和类间的分布,导致很多区分度不大的特征项被赋予了较大的权重。针对传统TFIDF算法的不足,本文在IDF的计算过程中,用词条在类内与类间的文档占比来考虑词条在类内与类间的分布。在实验中,用改进的权重算法表示文本向量,通过考察分类的效果,验证了改进算法的有效性。 相似文献
17.
自动文本分类就是在给定的分类体系下,让计算机根据文本的内容确定与它相关联的类别。特征选择作为文本分类中的关键,困难之一是特征空间的高维性,因此寻求一种有效的特征选择方法,降低特征空间的维数,成为文本分类中的重要问题。在分析已有的文本分类特征选择方法的基础上,实现了一种组合不同特征选择方法的多特征选择方法,应用于KNN文本分类算法,实验表明,多特征选择方法分类效果比单一的特征选择方法分类效果有明显的提高。 相似文献
18.
基于多特征选择的中文文本分类 总被引:1,自引:0,他引:1
自动文本分类就是在给定的分类体系下,让计算机根据文本的内容确定与它相关联的类别。特征选择作为文本分类中的关键,困难之一是特征空间的高维性,因此寻求一种有效的特征选择方法,降低特征空间的维数,成为文本分类中的重要问题。在分析已有的文本分类特征选择方法的基础上,实现了一种组合不同特征选择方法的多特征选择方法,应用于KNN文本分类算法,实验表明,多特征选择方法分类效果比单一的特征选择方法分类效果有明显的提高。 相似文献