首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Polypropylene (PP) compatibly sized glass fibres (GFs) were treated with boiling water and toluene, respectively, to reveal the interactions of water and toluene with different components in the sizing of sized GF and their influences on the interfacial adhesion strength of GF/PP model composites. Compared to control GF/PP model composites, about 30% increase of interfacial adhesion strength was achieved for composites with water-treated GF, whereas a small decrease of interfacial adhesion strength was revealed for composites with toluene-treated GF. X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Zeta-potential measurement, and water contact angle measurement demonstrated that the boiling water-treated GFs posses a more polar and hydrophilic surface with homogeneously distributed derivatives of 3-aminopropyltriethoxysilane, which is related to a higher interfacial adhesion strength for water-treated GF/PP model composites. In contrast, hot toluene-treated GFs led to a more hydrophobic surface with low molar mass PP and surfactants enriching on the outermost surface.  相似文献   

2.
Polypropylene (PP) composites reinforced with recycled carbon fibre have been prepared through extrusion compounding and injection moulding. The reinforcing potential of the recycled fibre was increased by improving the interfacial adhesion between the fibre and PP matrix and this was done by the addition of maleic anhydride grafted polypropylene (MAPP) coupling agents. Three MAPP couplers with different molecular weights and maleic anhydride contents were considered. The effects on the mechanical properties of the composite were studied, and scanning electron microscopy (SEM) was used to study the fracture morphology of the tensile specimens. It was observed that with the addition of MAPP the interfacial adhesion was improved as fewer fibres were pulled-out and less debonding was seen. A microbond test was performed and a significant improvement in interfacial shear strength was measured. This resulted in composites with higher tensile and flexural strengths. The maximum strength was achieved from MAPP with the highest molecular weight. Increased modulus was also achieved with certain grades of MAPP. It was also found that the composite impact strength was improved significantly by MAPP, due to a higher compatibility between the fibre and matrix, which reduced crack initiation and propagation.  相似文献   

3.
Novel glass fiber (GF)/bismaleimide composites with significantly improved flame retardancy, higher mechanical strength and lower dielectric loss were developed, of which the resin matrix is a new flame retarding resin system (BDDP) based on 4,4′-bismaleimidodiphenyl methane (BDM), 2,2′-diallyl bisphenol A (DBA) and [(6-oxido-6H-dibenz [c,e] [1,2] oxaphosphorin-6-yl)-methyl]-butanedioic acid (DDP). The influence of the loading of DDP in the matrix on the integrated performances of composites was intensively studied. Results show that GF/BDDP composites not only have significantly improved mechanical and dielectric properties, but also possess excellent flame retardancy. The main flame retarding mechanism of GF/BDDP composites is the condensed phase mechanism. The introduction of DDP significantly strengthens the interfacial adhesion between GF and the resin matrix, this is responsible for the attractive performances of GF/BDDP composites.  相似文献   

4.
考察了连续玻纤的表面处理、基体的接枝改性及接枝单体的种类和接枝产物的加入量对连续玻纤毡增强聚丙烯(CGFRPP) 力学性能的影响, 并通过红外光谱、扫描电镜对CGFRPP 的界面化学作用及界面粘结进行了研究。结果表明, 马来酸酐接枝改性聚丙烯与未经偶联剂处理的玻纤不能形成有效的化学结合, 而与经硅烷偶联剂表面处理的玻纤可发生明显的化学作用, 形成良好粘结, 显著提高CGFRPP 的力学性能; 硅烷偶联剂的种类对以改性PP 为基体的CGFRPP 力学性能的影响不大; 马来酸酐接枝聚丙烯比丙烯酸接枝聚丙烯对CGFRPP 力学性能的改善更为有效。   相似文献   

5.
The interfacial adhesion between E-glass fibers and various types of nanomodified polypropylene (PP) matrices have been investigated on single-fiber model composites. In particular, an evaluation of the fiber–matrix interfacial shear strength was performed by the fragmentation tests on model composites prepared by using PP matrices containing various amounts (up to 7 wt%) of expanded graphite nanoplatelets (xGnP).The presence of xGnP in the polymer matrix resulted in a remarkable increase of the interfacial shear strength values (up to a factor of about 6 for a 7 wt% content of xGnP) if compared to neat PP. Moreover, wettability measurements in various liquids evidenced that the work of adhesion of the polymer matrix with respect to glass fiber, was improved by the presence of xGnP.  相似文献   

6.
利用单丝临界断裂长度法研究了玻璃纤维(GF) 与聚丙烯(PP) 的界面结合, 发现在纤维 与基体均未作任何处理以前, PP 与GF 的界面剪切强度( ISS) 只有2. 75M Pa。在GF 经偶联剂处 理情况下, 若在PP 中加入0. 3% 不饱和芳香酰亚胺, ISS 增至4. 42M Pa 提高60%。酸酐改性PP 的使用, 可使ISS 达9. 20M Pa, 提高233. 9%。这一方法不仅可以准确判断PP 与GF 界面结合的 优劣, 而且可以为最终的复合材料设计提供可靠依据。   相似文献   

7.
The objective of this research was to study the potential of waste agricultural residues such as rice-husk fiber (RHF), bagasse fiber (BF), and waste fish (WF) as reinforcing and biodegradable agents for thermoplastic composites. Addition of maleic anhydride grafted polypropylene (MAPP) as coupling agent was performed to promote polymer/fiber interfacial adhesion. Several composites with various polypropylene (PP) as polymer matrix, RHF, BF, WF, and MAPP contents were fabricated by melt compounding in a twin-screw extruder and then by injection molding. The resulting composites were evaluated through mechanical properties in terms of tensile, flexural, elongation at break and Izod notched impact following ASTM procedures. Biodegradability of the composites was measured using soil burial test in order to study the rates of biodegradation of the composites. In general, the addition of RHF and BF promoted an increase in the mechanical properties, except impact strength, compared with the neat PP. According to the results, WF did not have reinforcing effect on the mechanical properties, while it could considerably improve the biodegradation of the composites. It was found that the composites with high content of WF had higher degradation rate. Except impact strength, all mechanical properties were found to enhance with increase in cellulosic fiber loading In addition, mechanical properties and biodegradability of the composites made up using RHF was superior to those of the composites fabricated with BF, due to its morphological (aspect ratio) characteristics.  相似文献   

8.
通过单丝临界断裂长度法, 研究了聚丙烯(PP) 与玻璃纤维(GF) 间界面剪切强度( ISS) , 发现调节酸酐改性聚丙烯(M PP) 的加入量, 可以相应调整ISS; 基体熔体与GF 接触时间在8~ 10 m in 以后界面才能结合完全。当ISS 小于4M Pa 时界面结合过弱, 纤维在断口处与基体脱粘, 形成 空管状; ISS 高于7M Pa 时界面结合过强, 纤维断口处基体产生垂直于纤维的裂缝, 材料变脆; ISS 在4~ 7M Pa 时界面结合最佳, 既不产生明显脱粘, 也不产生向基体内扩张的裂缝。复合材料的宏 观力学性能旁证了该结果。   相似文献   

9.
Water absorption and aging behaviors of fiber reinforced polymerized poly (cyclic butylene terephthalate) (GF/pCBT) composites are investigated. We coated nano-silica on glass fiber surface by physical vapor deposition (PVD) method. Subsequently, we immersed pCBT composites reinforced with nano-treated/untreated fibers in 25 °C and 60 °C distilled water until their saturated moisture. We also exposed some specimens in various hydrothermal aging environments. We tested the mechanical performance of these test specimens and found that the mechanical performance of both pCBT cast and GF/pCBT composites reduces obviously after water absorption and hydrothermal aging. However, nano-silica modified fiber reinforced composites have higher remaining strength than GF/pCBT. Scanning electron microscope (SEM) is used to study the microscopic phase and nanoparticle modified mechanism, and better interface characteristic between fibers and matrix is observed.  相似文献   

10.
对玻璃纤维/聚酰胺(GF/PA)、玻璃纤维/聚甲醛(GF/POM)、玻璃纤维/聚丙烯(GF/PP)这三种玻璃纤维增强热塑性树脂基复合材料进行机械连接试样的常规拉伸试验,以及低周疲劳拉伸试验,并对疲劳前后的试样断裂面进行SEM观察,研究了接头尺寸(宽径比w/d (试样宽度/开孔直径)和端径比e/d (试样端距/开孔直径))对机械连接件破坏载荷和破坏模式的影响。实验结果表明:玻璃纤维增强纤热塑性树脂复合材料机械连接件的承载能力在一定的宽径比时会随着e/d的增加而增加,当w/d≥3、e/d≥2时趋于稳定;破坏模式以拉伸破坏为主;低周疲劳拉伸对GF/POM和GF/PA机械连接试样拉伸强度产生一定的影响,而对GF/PP的拉伸强度无明显影响,低周疲劳拉伸对玻璃纤维增强热塑性树脂复合材料机械连接试样的破坏模式没有影响。SEM观察显示,随着疲劳载荷水平的增加,GF/POM和GF/PA的断裂面上被抽拔纤维数量增加,而GF/PP断裂面纤维与基体的存在状态无明显变化。   相似文献   

11.
为了提高玻璃纤维(GF)增强聚丙烯(PP)复合材料(GF/PP)的阻燃性能,通过在蒙脱土(MMT)悬浮液中进行三聚氰胺氰尿酸盐(MCA)分子自组装制备了新型协效成炭剂MCA-MMT,并采用FTIR、XRD、SEM和TGA对MCA-MMT的结构及热性能进行了表征;将MCA-MMT、无卤膨胀型阻燃剂与GF/PP熔融共混制备了阻燃复合材料MCA-MMT/(GF/PP),通过极限氧指数(LOI)测试、垂直燃烧试验和锥形量热测试研究了MCAMMT对GF/PP的阻燃效果和阻燃机制,并测试了复合材料的力学性能。结果表明:MMT的加入会影响氰尿酸和三聚氰胺在MCA合成过程中的氢键作用,干扰和抑制大平面氢键网络的形成,减少MCA氢键复合体的分子体积,使颗粒变小。MCA-MMT/(GF/PP)的UL-94防火等级达到V-0级,LOI为31.3%。MCA-MMT的阻燃效率高于传统MCA的,可降低材料燃烧的热释放程度和总烟释放量,使复合材料的阻燃性能提高,其阻燃机制为片层结构的MMT可提高MCA的成炭量,使MCA-MMT/(GF/PP)燃烧后能形成致密的残留炭层。MCA-MMT/(GF/PP)的拉伸、冲击强度与MCA/(GF/PP)的相比并未下降。  相似文献   

12.
对具有良好液晶聚合物微纤结构的聚丙烯/热致液晶聚合物/玻璃纤维 (PP/TLCP/GF) 混杂复合材料,使用静态拉伸和动态力学分析 (DMA) 的方法研究了材料的力学性能。拉伸实验结果表明,混杂复合材料的拉伸强度和模量随着PP和TLCP挤出后的牵伸速率增大而上升,并且含有增容剂PP-g-MAH的体系,力学性能更优异。DMA测试结果表明,混杂复合材料的动态模量E'随着体系中玻纤的含量增加而增大;当体系中加入增容剂后,复合材料的刚性得到进一步提高。但无论是否使用了增容剂PP-g-MAH,当体系中玻纤含量高于20%后,模量随玻纤含量增大的趋势变缓。当体系中增强相的含量增加,以及加入增容剂使增强相与基体的界面粘结得到改善后,PP基体的损耗因子 (tanδ) 峰值都有一定的减小。   相似文献   

13.
王庆伟 《包装工程》2017,38(15):53-57
目的研究玻璃纤维(GF)对聚丙烯(PP)/六钛酸钾晶须(SPTW)复合材料力学性能的影响。方法首先选用硅烷偶联剂KH550对六钛酸钾晶须进行改性,采用聚丙烯接枝马来酸酐(PP-g-MAH)作为相容剂,通过在PP/SPTW复合材料中引入不同质量分数的玻璃纤维(GF),利用熔融共混法制得一系列PP/SPTW/GF复合材料。采用SEM观察冲击断面结构和XRD观察复合材料晶型结构,并比较引入不同质量分数的GF后PP/SPTW复合材料力学性能的变化。结果当复合材料中GF质量分数为5%时,复合材料的弯曲强度、拉伸强度和冲击强度达到最佳,分别提升了18.38%,16.31%,20.24%;当复合材料中GF质量分数大于5%时,复材料的力学性能开始下降。结论在复合材料中引入GF后,能够明显改善复合材料的力学性能,且随着GF质量分数的逐渐增加,复合材料的力学性能整体呈现出先上升后下降的趋势。  相似文献   

14.
The long term performance of composite materials is highly desired for their expanding application range. Tuning the interphase properties has been proven to be a practical way to enhance the performance of composites. In this study, short glass fibre (GF) reinforced polypropylenes (PPs) with improved hygrothermal durability were obtained by incorporating NaBF4 into the sizing and thus the interphases of GF/PP composites. Detailed investigations were performed on the surface properties of sized GFs and the mechanical properties of virgin and aged composites. It was found that the retention in both ultimate tensile strength and Charpy impact toughness of aged composites monotonically increased with increasing NaBF4 content. The improvement in hygrothermal durability was related to the enhanced fibre/matrix adhesion strength induced by the presence of NaBF4 as indentified by fracture surface analysis using field-emission scanning electron microscopy and single fibre pull-out test.  相似文献   

15.
The effect of modifying the particle/matrix interfacial region on the morphology and tensile behaviour of glass bead-filled polypropylene (PP) composites was studied. The interface modification was promoted by blending PP with a small concentration (5% by weight) of poly(ethylene terephthalate-co-isophthalate) (co-PET). Ten different PP/co-PET/glass beads ternary composites were prepared, characterized and compared with the homologous PP/glass beads binary ones. Maleic anhydride-grafted PP was added as a compatibilizing agent for PP and co-PET in some of the studied formulations, and its effect studied. Furthermore, four different silane-treated glass beads were used to prepare the composites (50 wt.%). Results showed that three different interfaces, corresponding to three different levels (low, middle and high) of particle/matrix adhesion, could be obtained in these composites by varying the matrix composition and the silane coupling agent on the glass bead surface, which resulted in a wide range of tensile properties, from ductile composites with low tensile strength and high elongation to brittle ones with high tensile strength. It was found that co-PET embeds glass bead surface independently of the silane coupling agent employed. Finally, the adhesion degree differences between the different composite phases seemed to be the main cause to explain the differences found in the sensitivity of the composite tensile characteristics to the strain rate.  相似文献   

16.
报道了短玻纤增强聚丙烯复合材料中玻纤及注射压力对材料微观结构和力学性能的影响规律。实验结果表明: 随着玻纤含量提高, 复合材料的拉伸强度提高, 而断裂伸长率、冲击强度和熔体流动速率则下降。注射压力提高, 拉伸试样芯层中玻纤的平均取向角下降, 取向度提高, 因而拉伸强度增大, 冲击强度下降。皮层结构中玻纤沿熔体流动方向高度取向。聚丙烯球晶尺寸随玻纤含量增加而变小, 规整度也变差, 至40% 时, 聚丙烯已难以形成规整的球晶结构。  相似文献   

17.
采用熔融挤出共混制备了尼龙66(PA66)/玻璃纤维(GF)复合材料,比较了常用硅烷偶联剂KH550与不同有机酸封端的酰胺链硅烷界面结合剂(ASI)对复合材料的力学性能、动态力学性能及界面层结构的影响,探究了复合材料中界面层形成的机理。结果表明,ASI与玻纤表面反应发生了化学反应,ASI添加量为1.5%时,对PA66/GF复合材料的力学性能改善效果最明显,其中,以对苯二甲酸封端,相对分子质量为2000左右的PTA-ASI使PA66/GF复合材料的界面能力提升最高,拉伸强度提高了54.8%,复合材料的综合性能提高最为显著。  相似文献   

18.
以聚丙烯树脂(PP)为基体,剑麻纤维(SF)、玻璃纤维(GF)为增强材料。采用熔融共混、模压成型工艺制备PP/SF/GF复合材料。室温条件下,将试样在水中浸泡不同时间,分析其吸水率及性能的变化。结果表明,复合材料的吸水率均随浸泡时间的延长和SF/GF含量的增加而逐渐增加,其冲击强度和弯曲强度均随浸泡时间和SF/GF含量的增加呈下降趋势。同时,复合材料的热稳定性、PP相的结晶速率及结晶度也有所降低。  相似文献   

19.
采用过氧化物溶液涂覆玻璃纤维,将处理过的玻璃纤维丙烯复合,采用单丝临界长度法测定了复合体系的界面剪切强度,研究了过氧化物的引发作用对玻璃纤维/聚丙烯复合体系界面结合的影响,探索了复合工艺条件对体系界面结合的影响,并考察了所形成界面的耐水性能,结果表明,涂覆于玻纤表面的过氧化物在复合过程中能引发聚丙烯与玻璃纤维表面含双键的偶联剂反应,在纤维与基体之间形成较界面结合,过氧化物的这种引发作用对界面的耐水  相似文献   

20.
采用原位阴离子开环聚合法制备了连续玻璃纤维(GF)增强阴离子聚酰胺-6(APA6)复合材料,考察了催化剂配比和聚合温度对APA6树脂转化率和分子量的影响,采用DSC和TGA研究了聚合温度和时间对连续GF/APA6复合材料结晶度的影响,进一步探讨了聚合温度和时间对连续GF/APA6 复合材料力学性能的影响,采用SEM观察了复合材料的拉伸断裂形貌。结果表明: 当聚合温度为150 ℃,聚合时间为45 min时,连续GF/APA6 复合材料的力学性能达到最高,材料的拉伸强度为538.1 MPa,弯曲强度为497.2 MPa,层间剪切强度为52.5 MPa;SEM分析表明,APA6树脂基体与玻璃纤维具有较好的结合性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号