首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Fe3O4/SiO2/graphene composite composed of Fe3O4/SiO2 core–shell nanorods and graphene nanosheets were synthesized by a facile wet chemical method. Structure and morphology studies reveal that the Fe3O4/SiO2 nanorods with porous structure and large aspect ratio are densely wrapped by the graphene nanosheets. By changing the graphene content, the electromagnetic properties of the Fe3O4/SiO2/graphene composite can be well tuned. When the weight ratio of Fe3O4/SiO2 to graphene reaches an appropriate value, excellent microwave absorption performance is achieved due to the large electromagnetic losses and good impedance matching. The Fe3O4/SiO2/graphene composite with graphene content of 5 wt.% shows the minimum reflection loss of −27.1 dB at 12.2 GHz when the coating layer thickness is only 1.5 mm.  相似文献   

2.
Carbon nanotubes (CNTs) have been widely used as mechanical reinforcement agents of composites. However, their aggregations, weak interfacial interaction with polymer, as well as high electrical conductivity limit their use in some especial applications. In this paper, the silicon oxide (SiO2)-coated (CNT@SiO2) core–shell hybrids with different SiO2 thickness were prepared and employed to reinforce glass fibre-reinforced bismaleimide–triazine (BT) resin (GFRBT) composites. The results indicated the mechanical properties, including tensile strength and Young’s modulus increased with the increase of SiO2 thickness and CNT@SiO2 loading. Such enhanced mechanical properties were mainly attributed to the intrinsically nature of CNTs, homogeneous dispersion of the hybrids, as well as improved interfacial interaction. Meanwhile, the composites remained high electrical insulation (9.63 × 1012 Ω cm) due to the existence of SiO2 layer on CNT surface. This study will guide the design of functionalized CNTs and the construction of high-performance composites.  相似文献   

3.
Silica coated multiwalled carbon nanotubes (SiO2@MWCNTs) with different coating thicknesses of ∼4 nm, 30–50 nm, and 70–90 nm were synthesized by a sol–gel method and compounded with polyurethane (PU). The effects of SiO2@MWCNTs on the electrical properties and thermal conductivity of the resulting PU/SiO2@MWCNT composites were investigated. The SiO2 coating maintained the high electrical resistivity of pure PU. Meanwhile, incorporating 0.5, 0.75 and 1.0 wt% SiO2@MWCNT (70–90 nm) into PU, produced thermal conductivity values of 0.287, 0.289 and 0.310 W/mK, respectively, representing increases of 62.1%, 63.3% and 75.1%. The thermal conductivity of PU/SiO2@MWCNT composites was also increased by increasing the thickness of the SiO2 coating.  相似文献   

4.
Nanoporous TiO2/SiO2 composite micro-particles were prepared by an aerosol assisted co-assembly (AACA) and their characteristics were investigated for photocatalytic application. The average diameter of resulting co-assembled TiO2/SiO2 particles was ranged 4–10 μm, and increased as the precursor concentration increased. The TiO2/SiO2 particles were spherical in shape and pores ranged 1–100 nm in diameter. Photocatalytic activity of the as-prepared nanoporous TiO2/SiO2 particles was evaluated by measuring the photodegradation of methylene blue (MB) and NOx. Furthermore, the photocatalytic activity of nanoporous TiO2/SiO2 particles was compared with those of commercial TiO2 nanoparticles and nanoporous TiO2 particles. The nanoporous TiO2/SiO2 particles exhibited the highest photodegradation of MB and NOx among three samples, which was 80% after 3 h and 55% at 10 min, respectively.  相似文献   

5.
Spherical and nanoporous TiO2 and TiO2–SiO2 mixed micro-particles with four different compositions (20/80, 50/50, 80/20, 90/10 in weight ratio of TiO2/SiO2) were prepared by spray drying method from colloidal mixtures of amorphous silica and anatase titania nanoparticles. The as-prepared particles were heat-treated at 900 °C for 0.5–5 h. The TiO2 and TiO2–SiO2 particles were spherical in shape and the average particle diameter was about 1 μm. The anatase mass fraction and the specific surface area of TiO2–SiO2 (50 wt.% SiO2) mixed particles were kept to 61.5% and 30.6%, respectively, of their initial values after 5 h heat-treatment whereas these values of TiO2 particles were rapidly decreased to 13.0% and 1.2% of their initial values, respectively, within 30 min after heat-treatment. And the anatase mass fraction and specific surface area increased as SiO2 content in the TiO2–SiO2 mixed particles increased.  相似文献   

6.
Barium titanate@silicon dioxide (BT@SiO2) core@shell fillers with an average diameter of 100 nm were prepared by a facile sol–gel synthesis. The thickness of SiO2 shell can be easily tuned by varying different mass ratio of BT to tetraethyl orthosilicate (TEOS). Polyvinylidene fluoride (PVDF) based composite films reinforced by BT and BT@SiO2 were fabricated via a solution casting method. The effects of SiO2 shell on morphology structure, wettability, interfacial adhesion, dielectric, electrical and energy performances of composites were investigated. Compared with BT/PVDF, BT@SiO2/PVDF composites show significantly increased breakdown strength due to enhanced interfacial adhesion and suppressed charge carrier conduction. Benefiting from enhanced breakdown strength and reduced remnant polarization induced by SiO2 shell, BT@SiO2/PVDF shows increased release energy density (energy density which can be fully discharged and applicable). Especially, BT@SiO2/PVDF with SiO2 thickness of 4 nm exhibits the highest release energy density of 1.08 J/cm3 under applied electric field of 145 kV/mm.  相似文献   

7.
Polyacrylonitrile (PAN) nanofiber webs containing titanium dioxide (TiO2) were prepared via electrospinning. Either dimethyl formamide (DMF) or its mixture with small amount of water (3 and 5%w/w.) was employed to prepare 5%w/w.PAN/DMF or PAN/DMF/H2O solution, respectively. Introducing non-solvent water in PAN/DMF/H2O solution was attempted to induce phase separation, which may lead to formation of porous structure on nanofibers surface. Different amounts of TiO2 (1 to 3 wt.%) were added into PAN/DMF/(H2O) solutions and then electrospun into nanofiber webs. From SEM, nanofibers possessed rough surfaces and had averaged diameters in ranges of 170–430 nm., showing tendency to increase with amount of TiO2 and water. Porous structure on fiber surfaces was not clearly observed, which was suspected to be due to insufficient amount of water employed. Less homogeneity in polymer solution due to presence of TiO2 disfavored increasing water content higher than 5%w/w. EDS data confirmed presence of TiO2 in electrospun webs. From photocatalysis evaluation, webs containing 2 and 3 wt.% TiO2 showed good photocatalytic activity such that 80 percent of 10 ppm. methylene blue degraded in 24 hours. Slight increase in photocatalytic activity was observed in webs obtained from PAN/DMF/H2O solutions.  相似文献   

8.
Due to the poor wettability of the AgCuTi alloy on the SiO2f/SiO2 composite, direct brazing of the composite with an Invar alloy could hardly achieve a reliable joint. To overcome that, the SiO2f/SiO2 composite was decorated with few-layer graphene (FLG) by a plasma enhanced chemical vapor deposition (PECVD) method. Sessile drop experiments indicate that the contact angle dropped from 123.8° to 50.7° after FLG was grown on the surface of the SiO2f/SiO2 composite. Afterwards, the effects of brazing temperature and Ti contents on the microstructure evolution and mechanical properties of joints (Invar/SiO2f–SiO2 modified with FLG) were investigated. The typical interface structure of the joint is SiO2f–SiO2/Ti5Si3 + TiO2 + CuxTi6  xO(x = 2,3)/Ag(s,s) + Cu(s,s) + Cu–Ti blocks/wave-like Fe2Ti + Ni3Ti/Ag(s,s) + Cu(s,s) + Fe2Ti + Ni3Ti blocks/Invar. As the brazing temperature and Ti contents increase, the reaction layer on the SiO2f/SiO2 side becomes thicker and cracks gradually propagate. Meanwhile, a few dispersive Fe2Ti + Ni3Ti phases change into large-area wave-like compounds and more Cu–Ti compounds form with the increase of the Ti content. The microstructure evolution significantly affects the shear strength of the brazed joints. The highest shear strength is 26 MPa brazed at 860 °C for 10 min with 4.5 wt.% Ti content.  相似文献   

9.
Polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres have been successfully synthesized by sol–gel reactions on Fe3O4 microspheres followed by the chemical oxidative polymerization of aniline. The synthesized multilayer-structured composites were characterized by TEM, XRD, TGA, UV–vis diffuse reflectance spectra and magnetometer. The photocatalytic activity was evaluated by the photodegradation of methylene blue under visible light. The effect of polyaniline (PANI) amounts on the photocatalytic activity was investigated. The photocatalytic activity results show that the Fe3O4/SiO2/TiO2 composites with about 2.4 wt.%–4.1 wt.% PANI could show higher photocatalytic efficiency than that of Fe3O4/SiO2/TiO2. Furthermore, the PANI-Fe3O4/SiO2/TiO2 photocatalyst could be easily recovered using a magnet.  相似文献   

10.
《Materials Research Bulletin》2013,48(11):4872-4876
TiO2 photocatalysts co-doped with different content of Ag and N were prepared by sol–gel method combined with microwave chemical method. The samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM), ultraviolet–visible diffuse reflectance spectrum (UV–vis) and photo-luminescence emission spectrum (PL). The photocatalytic activity was investigated by photocatalytic degradation of methylene blue (MB) under irradiation of fluorescent lamp. The results indicate that Ag and N co-doping can restrain the increase of grain size, broaden the absorption spectrum to visible light region, and inhibit the recombination of the photo-generated electron–hole pairs. Moreover, the photocatalytic activity of Ag–N–TiO2 in MB degradation is remarkable improved. The degradation rate of the sample with Ag:TiO2 = 0.05 at%, N:TiO2 = 18.50 wt% in 5 h is 93.44%, which is much higher than that of Degussa P25 (39.40%).  相似文献   

11.
《Materials Research Bulletin》2006,41(12):2349-2356
In this paper, ZnSe/SiO2 thin films were prepared by sol–gel process. X-ray diffraction results indicate that the phase structure of ZnSe particles embedded in SiO2 thin films is sphalerite (cubic ZnS). The dependence of ellipsometric angle ψ on wavelength λ of ZnSe/SiO2 thin films was investigated by spectroscopic ellipsometers. The optical constant, thickness, porosity and the concentration of ZnSe/SiO2 composite thin films were fitted according to Maxwell–Garnett effective medium theory. The thickness of ZnSe/SiO2 thin films was also measured by surface profile. The photoluminescence properties of ZnSe/SiO2 thin films were investigated by fluorescence spectrometer. The photoluminescence results reveal that the emission peak at 487 nm (2.5 eV) excited by 395 nm corresponds to the band-to-band emission of sphalerite ZnSe crystal (2.58 eV). Strong free exciton emission and other emission peaks corresponding to ZnSe lattice defects are also observed.  相似文献   

12.
TiO2 nanopowders could be prepared by thermal processing of the precursor of titanium hydroxide, urea and Na2SiO3. The powders were characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The results show that Na2SiO3 has an important effect on the average crystallite size and dispersity of TiO2 nanopowders, and other phases (Na2SO4 and SiO2) will be introduced. However, Na2SO4 has distinctive intercalation ability and catalytic activity; SiO2 coating layers can effectively inhibit the agglomeration of TiO2 nanopowders. TiO2 (anatase) powders with well dispersity can be prepared at ~600 °C for 2 h with addition of 2–6 wt.% Na2SiO3, and the average crystallite size is 15.5–22.1 nm. The surface of the sample mainly consists of Ti, O, C, Si, Na and S six species elements.  相似文献   

13.
In a typical chemical mechanical polishing (CMP) process, the type, morphology, structure, mechanical, and surface characteristics of abrasive particles play an important role in influencing the material removal process. The novel abrasive particles with special mechanical and/or tribochemical properties have been introduced into CMP processes for the improvement of surface quality and finishing efficiency. In this work, the composite particles containing solid silica (sSiO2) cores and mesoporous silica (mSiO2) shells were prepared via a developed Stöber method using cetyltrimethylammonium bromide as a structure-templating surfactant. The as-synthesized core/shell structured sSiO2/mSiO2 composite particles were characterized by powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and nitrogen sorption–desorption measurements. The effect of the sSiO2 core size of the composite particles on oxide CMP performance was evaluated in terms of surface roughness and material removal rate (MRR). The root-mean-square surface roughness (0.15–0.31 nm) of the polished substrates slightly increased with increasing of the sSiO2 core size (168–353 nm) of the composites with a comparable mSiO2 shell thickness (16–18 nm). The sSiO2/mSiO2 composite particles with a relatively smaller or larger core presented a relatively high MRR for silicon oxide films. These oxide CMP results could be rationalized according to the contact area mechanism and indentation-based mechanism, incorporating the total contact area and chemical reactivity between particles and wafers, and the indentation depth of an abrasive particle onto the substrate surface.  相似文献   

14.
Polyvinyl alcohol-TiO2 (PVA-TiO2) core sheath nanofibers were fabricated by electrospinning an aqueous solution of PVA and introducing the thread-like droplets directly into a titanium tetraisopropoxide (TTIP)/hexane solution. Rod-like and sheet-like structures of lepidocrocite-type layered titanate formed on the surface of the TiO2 sheath of the nanofibers by alkaline treatment in 1 mol L−1 aqueous NaOH solution at 363 K. The nanofibers were converted to hollow TiO2 nanofibers with surface nanostructure and anatase crystallinity by acid treatment to remove sodium ions and heat treatment at 773 K. The surface nanostructures enhanced the crystallinity and external surface area of the nanofiber and contributed to the improvement of photocatalytic oxidation activity.  相似文献   

15.
《Materials Research Bulletin》2013,48(11):4889-4895
Poly(vinyl pyrrolidone)/CoFe2O4 nanocomposite has been fabricated by a sol–gel auto-combustion method. Poly(vinyl pyrrolidone) was used as a reducing agent as well as a surface capping agent to prevent particle aggregation and stabilize the particles. The average crystallite size estimated from X-ray line profile fitting was found to be 20 ± 7 nm. The high field irreversibility and unsaturated magnetization behaviours indicate the presence of the core–shell structure in the sample. The exchange bias effect observed at 10 K suggests the existence of the magnetically aligned core surrounded by spin-disordered surface layer. The reduced remanent magnetization value of 0.6 at 10 K (higher than the theoretical value of 0.5) shows the PVP/CoFe2O4 nanocomposite to have cubic magnetocrystalline anisotropy according to the Stoner–Wohlfarth model.  相似文献   

16.
《Materials Research Bulletin》2013,48(11):4844-4849
A magnetic composite containing V/TiO2 was prepared by combination of sol–gel and wetness impregnation methods. The effects of synthesis temperature, different weight percents of Fe supported on TiO2, vanadium loading and the heating rate of calcination on the structure and morphology of nanocatalyst were investigated. The optimum conditions for synthesized catalyst were 40 wt.% of Fe, 15 wt.% of V and synthesis temperature equal to 30 °C. Characterization of catalyst is carried out using XRD, TGA, DSC, SEM, FTIR and N2 physisorption measurements. The magnetic character of nanocatalyst was measured using VSM, which showed the typical paramagnetic behavior of sample at room temperature with a saturation magnetization value equal to 8.283 emu/g. The nanocatalyst has a particle size about 56 nm and can easily be separated from medium by a magnet.  相似文献   

17.
《Materials Research Bulletin》2013,48(11):4924-4929
Compositions based on (1−x)Ca0.6Nd8/3TiO3x(Li1/2Nd1/2)TiO3 + yLi (CNLNTx + yLi, x = 0.30–0.60, y = 0–0.05), suitable for microwave applications have been developed by systematically adding excess lithium in order to tune the microwave dielectric properties and lower sintering temperature. Addition of 0.03 excess-Li simultaneously reduced the sintering temperature and improved the relative density of sintered CNLNTx ceramics. The excess Li addition can compensate the evaporation of Li during sintering process and decrease the secondary phase content. The CNLNTx (x = 0.45) ceramics with 0.03 Li excess sintered at 1190 °C have single phase orthorhombic perovskite structure, together with the optimum combination of microwave dielectric properties of ɛr = 129, Q × f = 3600 GHz, τf = 38 ppm/°C. Obviously, excess-Li addition can efficiently decrease the sintering temperature and improve the microwave dielectric properties. The high permittivity and relatively low sintering temperatures of lithium-excess Ca0.6Nd0.8/3TiO3/(Li0.5Nd0.5)TiO3 ceramics are ideal for the development of low cost ultra-small dielectric loaded antenna.  相似文献   

18.
We report on the linear and nonlinear optical studies on TiO2–SiO2 nanocomposites with varying percentage ratio. It is found that optical band gap of the material varies with respect to the amount of the SiO2 in the composite. Nonlinear optical characterization of these samples was studied by using open as well as closed aperture Z-scan technique using an Nd:YAG laser (532 nm, 7 ns, 10 Hz). The nanocomposites showed enhanced nonlinear optical properties than pure TiO2 and this can be attributed to the surface states and weak dielectric confinement of TiO2 nanoparticles by SiO2 matrix. The nanocomposites were thermally treated and similar studies were performed. The anatase form of TiO2 in the nanocomposites showed superior properties relative to the amorphous and rutile phase of the composite. The involved mechanism is explained by taking into account the dominant role played by the excitons in the TiO2 nanoparticles.  相似文献   

19.
In this article, a flax fiber yarn was grafted with nanometer sized TiO2, and the effects on the tensile and bonding properties of the single fibers and unidirectional fiber reinforced epoxy plates were studied. The flax fiber yarn was grafted with nanometer sized TiO2 through immersion in nano-TiO2/KH560 suspensions under sonification. The measured grafting content of the nano-TiO2 ranged from 0.89 wt.% to 7.14 wt.%, dependent on the suspension concentration. With the optimized nano-TiO2 grafting content (∼2.34 wt.%), the tensile strength of the flax fibers and the interfacial shear strength to an epoxy resin were enhanced by 23.1% and 40.5%, respectively. The formation of Si–O–Ti and C–O–Si bonds and the presence of the nano-TiO2 particles on the fiber surfaces contributed to the property enhancements. Unidirectional flax fiber reinforced epoxy composite (Vf = 35.4%) plates prepared manually showed significantly enhanced flexural properties with the grafting of nano-TiO2.  相似文献   

20.
TiO2–SiO2 composite nanotubes were successfully synthesized by a facile sol–gel technique utilizing ZnO nanowires as template. The nanotubes were well characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, N2 adsorption–desorption analysis and UV–vis diffuse reflectance spectroscopy. The nanotubular TiO2–SiO2 composite photocatalysts showed diameter of 300–325 nm, fine mesoporous structure and high specific surface area. The results indicated that the degradation efficiency of gaseous toluene could get 65% after 4 h reaction using the TiO2–SiO2 composite as the photocatalyst under UV light illumination, which was higher than that of P25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号