共查询到20条相似文献,搜索用时 46 毫秒
1.
针对部分风场因有标签故障样本数据稀少而导致风电齿轮箱故障诊断准确率不高的问题,提出了一种小样本下混合自注意力原型网络的故障诊断方法。首先,通过原型网络将振动信号映射到故障特征度量空间;然后采用位置自注意力机制和通道自注意力机制进行矩阵融合构建混合自注意力模块,建立原始振动信号的全局依赖关系,获取更具判别性的特征信息,学习风电齿轮箱各健康状态下的度量原型;最后通过度量分类器进行模式识别,实现小样本条件下风电齿轮箱的故障诊断。实验结果表明,所提出的混合自注意力原型网络故障诊断方法在不同小样本数据集上均能实现风电齿轮箱高精度故障诊断。 相似文献
2.
异物入限是导致铁路安全事故频发的主要原因之一,传统深度学习需要大量训练样本进行网络训练,但铁路场景中入侵样本很少且难于获取。本文提出了基于改进度量元学习的铁路小样本异物入侵检测方法。为了让入侵目标的特征表征在分类时发挥更大作用,提出了基于通道注意力机制的特征提取网络;为解决样本数量不足时个别样本在特征空间中产生偏离的问题,提出了一种基于类中心微调的网络用于类别中心的修正;同时,基于center loss与交叉熵构建了中心相关损失函数用于小样本网络训练,提升特征空间中同类别特征分布的紧凑性。在公共数据集miniImageNet上与经典小样本学习模型中最优的相比,本文算法在5-way 5-shot设置下图像分类准确率提升了7.31%。在铁路入侵小样本数据集的5-way 5-shot消融实验表明:本文提出的通道注意力机制(Channel Attention Mechanism,CAM)和中心相关损失函数分别提升0.86%和1.91%的检测精度;提出的类中心微调和预训练方法对检测精度的提升效果更明显,分别达到3.05%和6.70%,上述模块综合应用的提升效果达到了7.90%。 相似文献
3.
针对实际工程中因故障样本数据稀少而导致模型识别准确率不高的问题,提出了一种基于自校正卷积神经网络(SC-CNN)的滚动轴承故障诊断模型,并将其应用于小样本条件下的故障识别研究。首先,为减少不同信号的数据分布差异,在每个卷积层后添加BN算法;其次,利用自校正卷积学习信号的多尺度特征,提高模型获取有用故障特征的能力;然后,引入通道自注意力机制,建立通道特征信息之间的相关性,用于突出故障特征并抑制数据过拟合;再将少量训练样本输入到模型中进行学习;最后,将各类不同条件下的故障信号输入到训练好的SC-CNN模型进行识别分类,并在两个数据集上进行实验验证。结果表明,所提模型在信噪比为-4 dB的强噪声环境下,识别准确率分别为98.64%和99.83%,在变工况条件下,识别准确率分别为94.37%和99.64%,验证了SC-CNN模型在小样本条件下具有较强的鲁棒性和泛化性能。 相似文献
4.
针对风机叶片开裂状态样本少、识别率低的问题,提出基于生成式对抗网络(GAN)的开裂状态样本增强方法来提高识别率。以经验风险分类模型为对象,从理论角度对不平衡样本问题进行深入分析,设计了满足开裂样本生成与判别的GAN网络模型,引入批量归一化保障特征服从标准正态分布,加速网络训练过程收敛。以神经网络为分类器,以F1值、Recall、Precision为度量指标,在36个UCI基准数据集上对所提方法进行测试,结果表明增强后的结果更好。真实实验表明,以逻辑回归及神经网络为分类器,相比原始不平衡样本,增强后的结果分别提升13.88%,8.20%。与SMOTE算法对比,以上两种分类器的分类准确率分别提高74%和11%;与ADASYN算法对比,分类准确率分别提高19%和23%。 相似文献
5.
针对元学习少样本分类样本特征鉴别能力不足的问题,提出了一种类内-类间通道注意力少样本分类方法(Intrainter Channel Attention Few-shot Classification, ICAFSC)。ICAFSC在原型网络基础上设计了一个类内-类间通道注意力模块,该模块通过类内-类间距离度量计算通道权重实现特征加权,提高特征对类别的鉴别能力。为了克服直接在元训练阶段学习类内-类间通道注意力模块容易出现过拟合或欠拟合现象的问题,ICAFSC在原型网络的元训练之前增加一个预训练阶段。该阶段设计具有大量标记样本的分类任务,并利用这些任务充分训练类内-类间通道注意力模块,促使该模块达到较优的状态。在原型网络的元训练和元测试阶段,ICAFSC冻结类内-类间通道注意力模块的参数,分别实现少样本分类经验的学习与迁移。在MiniImagenet数据集上分别开展了1-shot和5-shot的少样本分类实验。实验结果表明:本文提出的类内-类间通道注意力少样本分类方法与原型网络相比,在1-shot和5-shot条件下分类准确率分别提高了1.93%和1.15%。 相似文献
6.
在小样本条件下识别水下航行器机械噪声源,通常运用直推式置信机(transductive confidence machine,简称TCM)与K-近邻法(K-nearest neighbors,简称KNN)相结合的TCM-KNN算法。但在高置信水平下,用这种方法对测试样本进行预测分类的能力不强。通过改进奇异测量方法,提出了改进的TCM-KNN算法。经舱段模型试验表明,该算法能有效地提高预测分类的正确率和预测的置信度,且分类性能优于常用的BP和RBF神经网络等模式识别方法。 相似文献
7.
8.
超声内检测是油气管道缺陷的主要检测方式之一,目前超声内检测在工业小样本的情况下存在缺陷识别边界定位不准的问题。本文提出了一种基于多维度选择性搜索的小样本缺陷识别方法,该方法首先对超声回波进行特征提取,其中包含使用基于孤立森林的回波特征点提取,和基于自然断点法的特征点聚类;其次提出了风险相似性度量方法,并使用梯度提升树建立波形特征和风险程度的回归模型;然后将多维度缺陷相似性信息融合在选择性搜索算法中,实现小样本缺陷识别;最后使用异常分数等区域风险度量指标实现缺陷边界的精准定位。实验结果表明,本文设计的基于多维度选择性搜索的小样本缺陷识别方法的查全率和查准率分别高达95.08%和85.46%,能有效解决超声信号缺陷识别边界定位不准的问题。 相似文献
9.
为提升复杂交通场景下天气识别准确率的同时实现网络轻量化,提出了一种结合改进ConvNeXt网络与知识蒸馏的天气识别方法。首先,在ConvNeXt网络的每组Block特征提取块后加入SimAm注意力机制,构建ConvNeXt_F网络,利用SimAm注意力机制对Block块提取的深层特征进行鉴权并校正权重,有效强化对天气判别性特征的捕获能力;其次,在网络训练过程中将Equalized Focal Loss(EFL)与Mutual-Channel Loss(MCL)采用平均占比的方式进行累加作为总损失函数,一方面利用EFL消除数据不均衡造成的影响,另一方面利用MCL减小同类天气下局部细节特征差异;最后,采用知识蒸馏技术将天气分类知识从ConvNeXt_F网络迁移到轻量级MobileNetV3网络,虽然精度略微损失但网络参数量大幅减少。实验结果表明,与其他算法相比,所提方法在本文构建的宁夏高速公路场景下的天气数据集weather-traffic和公开的自然天气数据集RSCM2017上准确率分别达到96.22%,84.8%,FPS分别达到157.6 Hz,137.6 Hz,FLOPs和Param... 相似文献
10.
针对基于故障数据图像的诊断方法所需训练数据严重不足以及在小样本故障库条件下诊断准确率较低等问题,提出了一种基于深度卷积生成对抗网络(deep convolutional generative adversarial networks, 简称DCGAN)的扩充滚动轴承故障小样本库的方法,以丰富故障信息,在小样本故障库条件下提高故障诊断准确率。为了改善传统算法易产生的棋盘格效应,设计上采样卷积(up-sampling convolution, 简称USCONV)层,将传统DCGAN算法与双线性插值的上采样及卷积相结合,对故障数据小波变换图像进行训练学习,输出逼真的生成样本。该模型针对多种故障情况,在小样本故障库条件下能准确完善数据集,缓解过拟合等问题,提高了再诊断的准确性。实验结果表明,USCONV层对棋盘格问题有明显改善,小样本库扩充后诊断模型对包含多种故障情况的测试集识别率由91.67%提升至98.96%,证明了该方法的可行性和有效性。 相似文献
11.
为提高基于人体骨架(Skeleton-based)的动作识别准确度,提出一种利用骨架几何特征与时序注意递归网络的动作识别方法。首先,利用旋转矩阵的向量化形式描述身体部件对之间的相对几何关系,并与关节坐标、关节距离两种特征融合后作为骨架的特征表示;然后,提出一种时序注意方法,通过与之前帧加权平均对比来判定当前帧包含的有价值的信息量,采用一个多层感知机实现权值的生成;最后,将骨架的特征表示乘以对应权值后输入一个LSTM网络进行动作识别。在MSR-Action3D和UWA3D Multiview Activity II数据集上该方法分别取得了96.93%和80.50%的识别结果。实验结果表明该方法能对人体动作进行有效地识别且对视角变化具有较高的适应性。 相似文献
12.
为克服传统磨粒识别分类器训练时需要大量特征样本的缺点,设计一种基于多元支持向量机(Multi-Support Vector Machine,Multi-SVM)的磨粒识别分类器.支持向量机(SVM)是一种新的机器学习方法,在小样本和高维二元分类方面有非常突出的优点.实验证明,依据此优点设计的多元支持向量机磨粒分类器模型,不仅可以在小样本情形下对模型进行快速训练,而且可以快速识别多种磨粒类型,同时识别率也比传统的神经网络方法有较大提高,从而达到了提高设备监测和故障诊断效率的目的. 相似文献
13.
14.
为改进在发生形变、尺度变化及相似目标等多种干扰因素时视频中运动目标的跟踪精度,提出了一种联合注意力的孪生网络模型。首先,采用一种轻量级网络MobileNetV3作为主干网络对目标进行特征提取;然后,为提高模型对于目标关键特征的关注度,提出了通道联合空间注意力与孪生网络结合的模型结构;最后,对基于注意力模块与非注意力模块的特征向量互相关结果进行加权融合获得响应图,并利用该响应图获得目标跟踪结果。实验结果表明,所提算法在OTB50与OTB100数据集上能够获得较好的跟踪效果,两个数据集平均精确率和成功率达到78.5%和58.3%。此外,当存在形变、尺度变化及相似目标等不合作因素时,所提算法仍能取得较好的跟踪效果,从而表明该算法具有良好的鲁棒性。 相似文献
15.
针对视频镜头边缘检测准确率低的问题,提出了一种新的基于多特征的视频镜头检测算法。首先按时序读取多帧图像,并转换为灰度图;进一步将帧图像均匀分块,计算每个图像块的平均梯度,构造视频动态纹理;比较相邻帧视频动态纹理的相关性及两帧SIFT特征的匹配程度,根据匹配结果得出预检测结果;接下来与步长低于人眼刷新频率的下一帧动态纹理及SIFT特征相比较,得到最终的结果。通过对多组不同类型的视频数据进行实验,均能取得较高的召回率和准确率。该文算法对结构较复杂的渐变镜头进行检测,也能取得较高的检测准确率和召回率。 相似文献
16.
针对传统双流网络无法捕捉视频序列中的时序关系从而导致对时序依赖较大的行为识别效果不理想的问题,提出一种基于改进双流时空网络的人体行为识别算法.首先利用时间移位思想,使卷积神经网络对视频中的时序关系建模,从而高效地捕捉视频中的时空信息;同时使用注意力机制改善由于通道信息在时间轴上移动导致的空间特征学习能力下降的问题;在此... 相似文献
17.
随着人们对社会安全的重视,以及网络广泛应用,对网络视频进行了研究,设计了一个基于以太网的人脸识别系统。系统基于ARM+Linux实现了一个嵌入式的网络摄像头设备,该设备通过网络传输视频至服务器,服务器接收视频帧,调用OpenCV图像处理库对获取到的视频帧进行处理,从而实现了远程的人脸检测、识别功能。 相似文献
18.
19.
20.
由于单星敏感器横滚测量精度偏低会影响航向测量精度,本文针对测量船的实际使用环境,提出了基于视轴指向的双星敏感器船体姿态测量方法。介绍了单星敏感器船体姿态测量原理及其不足,分析了星敏感器滚动角测量误差对船体姿态测量精度的影响。设计了双星敏感器船体姿态测量系统,建立了基于视轴指向测量的双星敏感器船体姿态测量模型。最后,对该算法模型进行了外场试验验证。试验结果表明,基于双星敏感器的船体姿态测量方法获得的航向、纵摇及横摇测量精度分别为6.9″、5.7″及4.5″,显著优于基于单星敏感器的船体姿态测量精度,避免了星敏感器横滚测量精度对航向测量结果的影响,为船用星敏感器的工程设计提供了参考依据。 相似文献