首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Materials Research Bulletin》2006,41(10):1972-1978
The effect of V2O5 addition on the microwave dielectric properties and the microstructures of 0.4SrTiO3–0.6La(Mg0.5Ti0.5)O3 ceramics sintered for 5 h at different sintering temperature were investigated systematically. It was found that the sintering temperature was effectively lowered about 200 °C by increasing V2O5 addition content. The grain sizes, bulk density as well as microwave dielectric properties were greatly dependent on sintering temperature and V2O5 content. The 4ST–6LMT ceramics with 0.25% V2O5 sintered at 1400 °C for 5 h in air exhibited optimum microwave dielectric properties of ɛr = 50.7, Q × f = 15049.6 GHz, Tf = −1.7 ppm/°C.  相似文献   

2.
We report the study of the effects of processing parameters and additive concentration on the structure, microstructure and microwave dielectric properties of MTO–CeO2 (x wt.%) ceramics with x = 0, 0.5, 1.0 and 1.5 prepared by solid-state reaction method by adding CeO2 nanoparticles as a sintering aid. The pure Mg2TiO4 ceramics were not densifiable below 1450 °C. However, when CeO2 nanoparticles were added to MTO, the densification achieved at 1300 °C along with the increase in average grain size with the uniform microstructure and improved microwave dielectric properties. This is mainly driven by the large surface energy of CeO2 nanoparticles and their defect energy during the sintering process. While the addition of CeO2 nanoparticles in MTO ceramics does not change the dielectric constant (?r), the unloaded quality factor (Qu) was altered significantly. MTO–CeO2 (1.5 wt.%) ceramics sintered at 1300 °C exhibit superior microwave dielectric properties (?r  14.6, Q × f0  167 THz), as compared to the pure Mg2TiO4 ceramics. The observed results are correlated to the enhancement in density and the development of uniform microstructure with the enhanced grain size.  相似文献   

3.
Gd2O3 (0–0.8 wt.%)-doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 (BNKT18) lead-free piezoelectric ceramics were synthesized by a conventional solid-state process. The effects of Gd2O3 on the microstructure, the dielectric, ferroelectric and piezoelectric properties were investigated. X-ray diffraction (XRD) data shows that Gd2O3 in an amount of 0.2–0.8 wt.% can diffuse into the lattice of BNKT18 ceramics and form a pure perovskite phase. Scanning electron microscope (SEM) images indicate that the grain size of BNKT18 ceramics decreases with the increase of Gd2O3 content; in addition, all the modified ceramics have a clear grain boundary and a uniformly distributed grain size. At room temperature, the ferroelectric and piezoelectric properties of the BNKT18 ceramics have been improved with the addition of Gd2O3, and the BNKT18 ceramics doped with 0.4 wt.% Gd2O3 have the highest piezoelectric constant (d33 = 137 pC/N), highest relative dielectric constant (εr = 1023) and lower dissipation factor (tan δ = 0.044) at a frequency of 10 kHz. The BNKT18 ceramics doped with 0.2 wt.% Gd2O3 have the highest planar coupling factor (kp = 0.2463).  相似文献   

4.
Er2O3 (0–0.8 wt.%)-doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 (BNKT18) lead-free piezoelectric ceramics were synthesized by a conventional solid-state reaction method. The effects of Er2O3 on the microstructure and electrical properties were investigated. X-ray diffraction (XRD) data shows that Er2O3 in an amount of 0.2–0.8 wt.% can diffuse into the lattice of the BNKT18 ceramics and form the pure perovskite phase. Scanning electron microscope (SEM) images indicate that the grain sizes of BNKT18 ceramics decrease with the increase of Er2O3 content; in addition, the modified ceramics have the clear grain boundary and a uniformly distributed grain size. At room temperature, the electrical properties of the BNKT18 ceramics have been improved with the addition of Er2O3, and the BNKT18 ceramics doped with 0.6 wt.% Er2O3 have the highest piezoelectric constant (d33 = 138 pC/N), the highest planar coupling factor (kp = 0.2382), the highest remnant polarization (Pr = 25.2 μC/cm2), the higher relative dielectric constant (εr = 936) and lower dissipation factor (tanδ = 0.047) at a frequency of 10 kHz. Moreover, the Tm and Td of the samples increase with the addition of Er2O3.  相似文献   

5.
《Materials Letters》2006,60(17-18):2211-2213
The dielectric properties of (Ba1−xCax)1−1.5yBiyTiO3 (x = 0.10, 0.20 and 0.30, y = 0.05) ceramics were investigated. XRD analysis shows that 5 at.% of Bi doping can be fully incorporated into the perovskite lattice of (Ba1−xCax)TiO3. The maximal dielectric constant Km of (Ba1−xCax)1−1.5yBiyTiO3 ceramics decreases significantly with increasing x for all the compositions. Compared with undoped Ba1−xCaxTiO3 ceramics [Mater. Chem. Phys. 77 (2002)], Bi doping remarkably shifts the temperature of the peak dielectric constants Tm to lower temperature and a broad dielectric peak exhibits strong frequency dispersion. With increasing frequency, Km decreases and Tm shifts to higher temperatures in (Ba1−xCax)1−1.5yBiyTiO3 ceramics. A typical behavior to well-known relaxor ferroelectric is observed. The relaxation behavior observation is suggested due to a random electric field induced domain state.  相似文献   

6.
In the present work, the 0.3Li2TiO3–0.7Li(Zn0.5Ti1.5)O4 ceramic was prepared via the conventional solid state reaction route, and the phase composition, microstructure, and sintering behavior were investigated. The ceramic sample sintered at 1100 °C for 2 h demonstrated high microwave dielectric performance with a relative permittivity of 23.5, a high quality factor (Qf) ~ 88,360 GHz (at 7.4 GHz), and near zero temperature coefficient of resonant frequency about ? 0.8 ppm/°C. These results indicate that the 0.3Li2TiO3–0.7Li(Zn0.5Ti1.5)O4 ceramic might be a good candidate for dielectric resonators, filters and other microwave electronic device applications.  相似文献   

7.
《Materials Research Bulletin》2006,41(10):1868-1874
BaCu(B2O5) (BCB) ceramic powder was used to decrease the sintering temperatures of BaSm2Ti4O12 (BST) and BaNd2Ti5O14 (BNT) ceramics. The sintering temperature of the BST and BNT ceramics was reduced from approximately 1350 °C to 850 °C by the addition of BCB. The bulk density of the specimens increased and reached the saturated value with increasing BCB content. The variation of the dielectric constant (ɛr) was similar to that of the bulk density and, thus, the relative density plays an important role in determining the ɛr value of the specimens. The Q-value initially increased with the addition of BCB but decreased considerably when a large amount of BCB was added because of the presence of the liquid phase. Good microwave dielectric properties of Qxf = 4500 GHz, ɛr = 60 and τf = −30 ppm/°C were obtained for the 16.0 mol% BCB-added BST ceramics sintered at 875 °C for 2 h.  相似文献   

8.
《Materials Letters》2005,59(19-20):2408-2411
The A-site deficient perovskite Nd2/3TiO3  δ was synthesized under an H2–CO2 gas mixture. The sample was found to have slight oxygen deficiency of δ∼0.012. The crystal structure was assigned to a double perovskite structure with orthorhombic space group Pmmm, as in the case of La2/3TiO3  δ. Electrical conductivity measurement has also been performed. The temperature dependence of conductivity shows that electronic transport in Nd2/3TiO2.988 is well described by Emin–Holstein adiabatic small polaron model. The polaron density extracted from the conductivity measurement is ∼1.96 × 1020 cm 3. This result agrees well with nominal polaron density for Nd2/3TiO2.988, ∼2.1 × 1020cm 3. We have also derived important quantities for transport in Nd2/3TiO2.988.  相似文献   

9.
The origins of microwave dielectric properties (1 ? x)CaTiO3x(Li0.5La0.5)TiO3 (0.2  x  0.8) ceramics, prepared by a conventional solid-state reaction method, were investigated based on the theory of bond valence. The XRD and SEM results showed that complete solid solutions with orthorhombic perovskite structure were formed in the whole investigated compositional range. The dielectric constant (?r), quality factor (Q × f) and temperature coefficient of resonant frequency (τf) were closely related to B-site, A-site and the difference between A-site and B-site bond valences of ABO3 perovskite compounds, respectively. As x value increased from 0.2 to 0.8, the dielectric constant increased from 198.3 to 276.8, the Q × f value decreased from 4340 to 1880 GHz, and the τf value varied from +489.7 to ?178 ppm/°C. For practical applications, excellent microwave dielectric properties of ?r = 245, Q × f = 2750 GHz and τf = +0.75 ppm/°C were obtained for 0.4CaTiO3–0.6(Li0.5La0.5)TiO3 ceramics.  相似文献   

10.
《Materials Research Bulletin》2006,41(7):1385-1391
CaTi1−x(Fe0.5Nb0.5)xO3 (0  x  1) dielectrics were synthesized via the solid state reaction route and structure analysis was performed together with the dielectric characterization. The substitution of Ti4+ by Fe3+/Nb5+ and developed phase were studied by X-ray diffraction. The dielectric constant and temperature coefficient of resonant frequency decrease rapidly with an increase of x. The influence of 1–5 wt.% B2O3 as a sintering additive investigated at CaTi0.5(Fe0.5Nb0.5)0.5O3 solid solutions. The dielectric properties were found to strongly depend on the sintering conditions and contents of B2O3 additions. ɛr = 52.3, Q × fo = 2930 GHz and Tf = 13 ppm/°C were obtained for CaTi0.5(Fe0.5Nb0.5)0.5O3 specimen 3 wt.% B2O3 sintered at 900 °C for 2 h.  相似文献   

11.
《Materials Research Bulletin》2006,41(7):1330-1336
The sol–gel-hydrothermal processing of K0.5Bi0.5TiO3 (KBT) nanowires as well as their sintering behavior at 1000–1100 °C were investigated. The morphological analyses indicated that sol–gel-hydrothermal route led to the formation of KBT nanowires with diameters of 4 nm and lengths of 100 nm at low processing temperature of 200 °C with KOH concentration of 6 M. It is believed that the gel precursor and hydrothermal environment play an important role in the formation of the nanowires. The KBT ceramics with a relative density of more than 95% can be successfully fabricated from the high quality KBT nanowires even by a conventional sintering process. The KBT ceramics sintered at 1050 °C showed typical characteristics of relaxor ferroelectrics, and the dielectric properties were better than that prepared by all other methods reported previously.  相似文献   

12.
In this study, (100 ? x) K0.48Na0.48Li0.04Nb0.96Ta0.04O3 ? xSrTiO3 (0  x  10) ceramics were fabricated via normal sintering of synthesized powder by using solid state reaction. All ceramics revealed pure perovskite structure, indicating formation of solid solution between KNNLT and ST up to 10%. With increasing x, the crystal structure of ceramics changed from orthorhombic to tetragonal and finally pseudocubic symmetry when x = 10. Ceramic containing 1% ST had orthorhombic and tetragonal symmetries, simultaneously. Investigation of the variation of dielectric constant of ceramics versus temperature revealed that for ceramic with x = 1, polymorphic phase transition (PPT) temperature between orthorhombic and tetragonal is less than room temperature. Thus coexistence of two different structures in this ceramic is due to vicinity of its composition to morphotropic phase boundary (MPB). As a result, the maximum piezoelectric constant was measured for this ceramic. Ceramics containing 5 and 7.5% ST tend to appear relaxor ferroelectric behavior which is because of chemical inhomogeneities in both A- and B-sites of the ABO3 perovskite structure.  相似文献   

13.
New low sintering temperature and temperature-stable low-loss ceramics based on Li2TiO3 with lithium zinc borate (LZB) glass and LiZnNbO4 doping have been prepared by the conventional solid-state reaction route. The effect of LZB glass addition on the sinterability, phase purity, microstructure, and microwave dielectric properties of Li2TiO3 ceramics has been investigated. The XRD results suggest the presence of single Li2TiO3 phases for LZB glass-added Li2TiO3 ceramics. The addition of LZB glass can effectively lower the sintering temperature to 900 °C, and does not induce much degradation of the microwave dielectric properties. Typically, the 2.0 wt% LZB glass-added ceramic sintered at 900 °C has better microwave dielectric properties of εr = 23.2, Q × f = 38,909 GHz, and τ f  = 30.1 ppm/°C. Meanwhile, LiZnNbO4 compound is selected to tune the temperature coefficient of resonant frequency (τ f ) to near zero. It is found that the 2.0 wt% LZB glass-added Li2TiO3 ceramics with 35 wt% LiZnNbO4 sintered at 925 °C have good microwave dielectric properties of εr = 20.7, Q × f = 19,366 GHz, τ f  = ?0.5 ppm/°C, which can find applications in microwave devices that require low sintering temperature.  相似文献   

14.
K0.5Na0.5Nb1–xTaxO3 (KNNTx, x = 0–0.4) powders were synthesized by a novel hydro/solvothermal method at a low reaction temperature (180 °C) and the corresponding ceramics were obtained by normal sintering. Compared with conventional solid-state reaction technique, the optimal sintering temperatures of these ceramics were reduced at least 150 °C. Crystalline structures and surface morphologies were analyzed by X-ray diffraction and scanning electron microscopy. The excellent piezoelectric properties could be obtained by selecting poling temperature near the orthorhombic–tetragonal polymorphic phase transition temperature region. Ta-modified KNN ceramics exhibited better piezoelectric properties than those of pure KNN, and the piezoelectric coefficient d33 showed the maximum value of 156 pC/N for KNNT0.3 ceramics. In addition, the sintering temperature for maximum d33 value differed from that for maximum density. The present hydro/solvothermal method provides a new potential route for preparing KNN-based materials at relatively low temperature.  相似文献   

15.
《Materials Letters》2007,61(4-5):1007-1010
Sb2O3-doped Ba0.672Sr0.32Y0.008TiO3 (BSYT) dielectric ceramics were prepared by conventional solid state method, and their dielectric properties were investigated with variation of Sb2O3 doping content and sintering temperature. The X-ray diffraction patterns indicated that all the BSYT specimens possessed the perovskite polycrystalline structure. The experimental results reveal that the introduction of Sb2O3 into Ba0.672Sr0.32Y0.008TiO3 can control the grain growth, reduce the relative dielectric constant and dielectric loss, shift the Curie temperature to lower temperature and significantly improve the thermal stability of the BSYT ceramics. The samples doped with 1.6 wt.% Sb2O3 sintered at 1320 °C for 2 h exhibited attractive properties, including high relative dielectric constant (> 1500), low dielectric loss (< 40 × 10 4), low temperature coefficient of capacitor(< ± 35%) over a wide temperature range from − 25 °C to + 85 °C.  相似文献   

16.
This study investigates effects of the zinc oxide (ZnO) addition and the sintering temperature on the microstructure and the electrical properties (such as dielectric constant and loss tangent) of the lead-free piezoelectric ceramic of bismuth sodium titanate (Na0.5Bi0.5TiO3), NBT, which was prepared using the mixed oxide method. Three kinds of starting powders (such as Bi2O3, Na2CO3 and TiO2) were mixed and calcined. This calcined NBT powder and a certain weight percentage of ZnO were mixed and compressed into a green compact of NBT–ZnO. Then, this green compact of NBT–ZnO was sintered to be a disk doped with ZnO, and its characteristics were measured. In this study, the calcining temperature was 800 °C, the sintering temperatures ranged from 1000 to 1150 °C, and the weight percentages of ZnO doping included 0.0, 0.5, 1.0, and 2.0 wt%. At a fixed wt% ZnO, the grain size increases with increase in the sintering temperature. The largest relative density of the NBT disk obtained in this study is 98.3% at the calcining temperature of 800 °C, the sintering temperature of 1050 °C, and 0.5 wt% ZnO addition. Its corresponding dielectric constant and loss tangent are 216.55 and 0.133, respectively.  相似文献   

17.
《Materials Letters》2007,61(4-5):1166-1169
(Ca1−xBax)(Zn1 / 3Nb2 / 3)O3 (x = 0–1.0) microwave dielectric ceramics were prepared and investigated. The Ba(Zn1 / 3Nb2 / 3)O3-based solid solution was observed for x = 0.9, and the compositions with x = 0.1–0.7 resulted in the mixture of two phases. Dielectric constant εr and temperature coefficient of resonant frequency τf of the present ceramics varied anomalously and reached their maximum at x = 0.7–0.9, and these phenomena were originated from the partial substitution of small Ca2+ ions for larger Ba2+ at A-site. On the other hand, a good combination of microwave dielectric properties (εr = 36, Qf = 16,170 GHz, τf =  12 ppm/°C) were obtained at x = 0.1, while the decreased Qf value was observed in other compositions.  相似文献   

18.
《Materials Letters》2007,61(19-20):4066-4069
The microstructures, phase compositions and microwave dielectric properties of ZnAl2O4–TiO2 spinel-based composites have been investigated. It is found that ZnAl2O4 cannot form a solid solution with TiO2. As TiO2 content increases, the εr and τf values increase gradually, while the Q · f values degrade by degrees. Under the same amount of TiO2 content, the εr and Q · f values increase initially and then decrease slightly with increasing sintering temperature, while the τf values increase slowly. The optimal microwave dielectric properties are achieved in (1  x)ZnAl2O4xTiO2 (x = 0.21) sintered at 1500 °C for 3 h with εr value of 11.4, Q · f value of 71,810 GHz (at about 6.5 GHz), and τf value of − 0.5 ppm/°C.  相似文献   

19.
《Materials Research Bulletin》2006,41(6):1178-1184
The relationship between the sintering temperature and the microwave dielectric properties of Mg4(TaNb1−xVx)O9 (MTNV) compounds were investigated in this study in order to reduce the sintering temperature of the compound. A small amount of V2O5 doping lowered the sintering temperature of the MTNV compounds. The variations in the dielectric constant and the quality factor of the MTNV compounds depended on the amount of V2O5 doping and the sintering temperature; a small amount of V2O5 doping was effective in allowing low sintering temperatures without a detrimental effect on these dielectric properties. As a result, a dielectric constant of approximately 12 and a quality factor of approximately 200,000 GHz were obtained when the MTNV compounds with x = 0.2 was sintered at 1200 °C. The temperature coefficient of resonant frequency of the MTNV compound with x = 0.025 slightly changed from −63 to −73 ppm/ °C with an increased sintering temperature because of the presence of a secondary phase.  相似文献   

20.
《Materials Letters》2007,61(19-20):4188-4191
Microwave dielectric properties of novel lithium ion containing pyrochlore type oxides: Li3Sm3  xBixTi7Nb2O25 (x = 0, 1, 2 or 3) have been reported in this paper. Powder X-ray diffraction patterns show that these oxides have cubic pyrochlore type structure. Ceramic microstructure of the sintered samples show well formed grains. They have relatively high dielectric constant (εr) in the range 80–137 at 1 MHz and εr, 45–83 at the resonant microwave frequency region. It is seen that the dielectric constant (εr) increases with the increase of Bi content. The best microwave dielectric properties obtained for fully substituted samarium compound, Li3Sm3Ti7Nb2O25 are as follows: Q × f = 2007 and εr = 45 at the resonant microwave frequency, 3.78 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号