首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The wear behaviour of plasma sprayed coating and hard chrome plating on AISI 304 austenitic stainless steel substrate is experimentally investigated in unlubricated conditions. Experiments were conducted at different temperatures (room temp, 100 °C, 200 °C and 300 °C) with 50 N load and 1 m/s sliding velocity. Wear tests were carried out by dry sliding contact of EN-24 medium carbon steel pin as counterpart on a pin-on-disc wear testing machine. In both coatings, specimens were characterised by hardness, microstructure, coating density and sliding wear resistance. Wear studies showed that the hard chromium coating exhibited improved tribological performance than that of the plasma sprayed WC–Co coating. X-ray diffraction analysis (XRD) of the coatings showed that the better wear resistance at high temperature has been attributed to the formation of a protective oxide layer at the surface during sliding. The wear mechanisms were investigated through scanning electron microscopy (SEM) and XRD. It was observed that the chromium coating provided higher hardness, good adhesion with the substrate and nearly five times the wear resistance than that obtained by uncoated AISI 304 austenitic stainless steel.  相似文献   

2.
奥氏体不锈钢离子渗碳后的腐蚀行为   总被引:1,自引:0,他引:1  
为了提高奥氏体不锈钢零件的使用寿命,利用低温离子渗碳技术对AISI 316L奥氏体不锈钢进行了表面渗碳处理.用X射线衍射仪和光学显微镜分析了渗碳层的微观组织结构,用显微硬度计测试了渗碳层的硬度分布,通过电化学极化曲线测试技术和化学腐蚀试验研究了离子渗碳AISI 316L不锈钢的腐蚀行为.渗碳层为单相碳过饱和奥氏体固溶体,由此明显提高了AISI 316L不锈钢的抗腐蚀性能,渗碳层硬度梯度平缓,表面显微硬度高达900 HV.结果表明,奥氏体不锈钢低温离子渗碳处理不仅提高了其表面硬度,而且提高了不锈钢表面的耐腐蚀性能,从而提高了其使用寿命.  相似文献   

3.
A novel coating fabrication technique, known as supersonic laser deposition (SLD), which combines cold spray (CS) with laser technology, is applied to produce hard Ni60 (58–62 HRC) coating on medium carbon steel (AISI 1045 steel) substrate. Different process parameters are investigated to obtain the optimal. The Ni60 coating specimens prepared by SLD process are studied microstructurally using scanning electron microscope (SEM), energy dispersive spectrum (EDS) and X-ray diffraction (XRD). The microstructures of the coatings are compared with those of the coatings produced using laser cladding (LC). The hardness, tribological property and corrosion resistance of the Ni60 coatings produced by SLD and LC with the optimal process parameters are evaluated under Vickers hardness, pin-on-disk wear and electrochemical corrosion tests. It is demonstrated that the Ni60 coating with SLD exhibits some characteristics, such as fine microstructure as cast, stable phases and less dilution; it surpasses the coating produced with conventional LC process in sliding wear resistance; but in 1 mol/L H2SO4 solution, the SLD and LC coatings performed similarly in corrosion resistance. This research has proved that SLD technique enables depositing hard Ni60 on steel substrate, which is impossible for CS technique.  相似文献   

4.
《Vacuum》2010,84(12):1442-1447
The rapid technical development enhances the demands on constructional materials in terms of their resistance to frictional wear, resistance to corrosion and erosion, high hardness, high tensile and fatigue strength. These demands can be satisfied by e.g. applying various surface engineering techniques that permit to modify the microstructure, phase and chemical composition of the surface layers of the treated parts. A prospective line of the development of surface engineering is the production of composite layers by combining various surface engineering methods. The paper presents the results of examinations of the phase composition and frictional wear resistance of the layers produced by hybrid processes, i.e. such that combined glow discharge assisted nitriding performed at 450 °C and 550 °C with a pulsed laser deposition of boron nitride coatings (PLD method). It has been shown that the boron nitride coatings formed on nitrided AISI 316L steel increase its frictional wear resistance.  相似文献   

5.
In this paper, the Taguchi method was employed to optimize the spray parameters (spray distance, oxygen flow and kerosene flow) to achieve the highest hardness and, in turn, the best wear resistance of the high-velocity oxygen-fuel (HVOF) sprayed nanostructured WC–10Co–4Cr coating by investigating the correlation between the spray parameters and the hardness. The important sequence of spray parameters on the hardness of the coatings is kerosene flow > oxygen flow > spray distance, and the kerosene flow is the only significant factor. The optimal spray parameter (OSP) for the coating is obtained by optimizing hardness (330 mm for the spray distance, 2000 scfh for the oxygen flow and 6.0 gph for the kerosene flow). The coating deposited under the OSP with low porosity and high microhardness consists predominately of WC and a certain amount of W2C phases. The coating deposited under the OSP exhibits better wear resistance compared with the cold work die steel Cr12MoV. The material removal of the coating is the extrusion of the ductile Co–Cr matrix followed by the crack and the removal of the hard WC particles.  相似文献   

6.
低压等离子喷涂316L等轴晶涂层及其性能研究   总被引:5,自引:2,他引:3  
为研究低压等离子喷涂等轴晶涂层组织性能和形成机理,采用大气等离子喷涂(APS)和低压等离子喷涂(LPPS),分别制备了316L不锈钢涂层.利用金相显微镜,X射线衍射和显微硬度等方法,分析了2种涂层的金相组织、相结构、显微硬度和耐蚀性.结果表明:一定条件下制备的低压等离子喷涂SUS316L不锈钢涂层明显不同于传统大气等离...  相似文献   

7.
The tribological and protective properties of parylene C coatings (2–20 μm) on stainless steel 316L implant materials were investigated by means of electrochemical measurements and wear tests. The thickness and morphology of the CVD prepared coatings were characterized by scanning electron and laser confocal microscopy. The stability of the coatings was examined in contact with Hanks' solution and H2O2 (simulating the inflammatory response). It was concluded that silane–parylene C coating with the optimum thickness of 8 μm exhibits excellent wear resistance properties and limits the wear formation. The engineered versatile coating demonstrates sufficient elastomer properties, essential to sustain the implantation surgery strains and micromotions during long-term usage in the body.  相似文献   

8.
Apart from titanium, its alloys and CoCrMo alloys, austenitic steels are widely used in medical applications. In order to improve the frictional wear resistance of these steels, they are subjected to various surface treatments such that the good corrosion resistance of the steels is preserved.The paper analyzes the structure and phase composition of AISI 316L steel after subjecting it to low-temperature nitriding and oxynitriding under glow discharge conditions. The treatments produced diffusion-type surface layers composed of nitrogen-expanded austenite (known as the phase S, i.e. supersaturated solution of nitrogen in austenite) with a thin surface layer of chromium nitride (CrN) zone (after nitriding) or chromium oxide (Cr2O3) zone (after oxynitriding). It has been shown that the treatments substantially increase the hardness and frictional wear resistance of the steel without degrading its good corrosion resistance (examined in the Ringer physiological solution at a temperature of 37 °C).  相似文献   

9.
Austenitic stainless steels are widely used in medical and food industries because of their excellent corrosion resistance. However, they suffer from weak wear resistance due to their low hardness. To improve this, plasma nitriding processes have been successfully applied to austenitic stainless steels, thereby forming a thin and very hard diffusion layer, the so‐called S‐phase. In the present study, the austenitic stainless steels AISI 304L and AISI 316L with different microstructures and surface modifications were used to examine the influence of the steel microstructure on the plasma nitriding behavior and corrosion properties. In a first step, solution annealed steel plates were cold‐rolled with 38% deformation degree. Then, the samples were prepared with three kinds of mechanical surface treatments. The specimens were plasma nitrided for 360 min in a H2–N2 atmosphere at 420 °C. X‐ray diffraction measurements confirmed the presence of the S‐phase at the sample surface, austenite and body centered cubic (bcc)‐iron. The specimens were comprehensively characterized by means of optical microscopy, scanning electron microscopy, glow discharge optical emission spectroscopy, X‐ray diffraction, surface roughness and nano‐indentation measurements to provide the formulation of dependencies between microstructure and nitriding behavior. The corrosion behavior was examined by potentio‐dynamic polarization measurements in 0.05 M and 0.5 M sulfuric acid and by salt spray testing.  相似文献   

10.
316L stainless steel composites with various weight fractions of TiC particles were prepared using warm compaction and microwave sintering. Abrasion resistance measurements were used to study the abrasive behaviors of TiC-316L stainless steel composites. The effects of TiC content and preparation methods on the microstructure and mechanical properties of 316L stainless steel composites have been investigated. The results showed that the sample prepared by warm compaction and microwave sintering exhibited significantly superior densification, higher hardness, and better abrasion resistance when compared with conventionally processed counterpart. TiC particles reinforcement improved the abrasion resistance of 316L stainless steel, and the abrasion resistance of the composites was considerably better than that of the 316L stainless steel. The volume loss initially decreases with increasing TiC content up to 5 wt.%, it then slightly increases as increase the TiC particles content to 10 and 15 wt.%. In this present abrasion tests, the composites using 5 wt.% TiC addition offers a high abrasion resistance.  相似文献   

11.
In this study, the microstructure and mechanical properties of sintered AISI 316L stainless steel implant materials produced by powder metallurgy (P/M) method were investigated as a function of porosity amount. AISI 316L stainless steel powders were cold-pressed with 800 MPa pressure and sintered at 1200 °C, 1250 °C and 1300 °C for 30 min in a nitrogen atmosphere. The mechanical properties of the 316L implant samples were determined by tensile, fatigue and microhardness tests. Metallographic studies such as pore formation, and fractured surface analyses were performed by Scanning Electron Microscopy (SEM) and Light Optical Microscopy (LOM). The results of this study indicate that, irregular pore formation tendencies increase with an increase in porosity (%). Furthermore, an increase in porosity was shown to decrease the mechanical properties of sintered AISI 316L stainless steel. Sintering temperature is important parameter in decreasing the porosity of P/M materials.  相似文献   

12.
A series of experiments have been conducted on AISI 304 stainless steel using a hollow cathode discharge assisted plasma nitriding apparatus. Specimens were nitrided at high temperatures (520–560 °C) in order to produce nitrogen expanded austenite phase within a short time. The nitrided specimen was characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, potentiodynamic polarization and microhardness tester. The corrosion properties of nitrided samples were evaluated using anodic polarization tests in 3.5% NaCl solution. The nitrided layer was shown to consist of nitrogen expanded austenite and possibly a small amount of CrN precipitates and iron nitrides. The results indicated that rapid nitriding assisted hollow cathode discharge not only increased the surface hardness but also improved the corrosion resistance of the untreated substrate.  相似文献   

13.
Low magnetic permeability is an important criterion in selection of the material of construction of beam pipes and vacuum chambers of electron accelerators for safeguarding against distortion of the magnetic field. In the modified design of new 20 MeV/30 mA Injector Microtron for the existing synchrotron radiation sources Indus-1 and Indus-2, AISI 316 LN stainless steel has been identified as the material of construction of its vacuum chamber. Welding of AISI 316LN stainless steel with conventional filler alloys like ER316L and ER317L of AWS A5.9 produces duplex weld metal with 3–8% ferro-magnetic delta ferrite to avoid solidification cracking. The results of the study has demonstrated that GTAW of AISI 316LN SS with high Mn adaptation of W 18 16 5 N L filler produced a crack free non-magnetic weld with acceptable mechanical properties. Moreover, AISI 316LN stainless steel is not required to be solution annealed after the final forming operation for obtaining a low magnetic permeability, thereby avoiding solution annealing of large vacuum chamber in vacuum/controlled atmosphere furnace and associated problems of distortion. Besides Injector Microtron, the study also provides useful input for design of future indigenous accelerators with vacuum chambers of austenitic stainless steel.  相似文献   

14.
用失重法和电化学法研究了A3钢化学镀镍层、ATSI316和AISI304L不锈钢在NaSCN溶液中的腐蚀行为。结果表明,AIS316不锈钢在NaSCNB溶液中具有优良的耐蚀性。其成分中Mo能抑制点蚀。A3钢Ni-P镀层在NaSCN溶液中可能取代不锈钢,但镀层针孔及缺陷问题有待解决。  相似文献   

15.
Keyhole gas tungsten arc welding (K-TIG) was used to weld AISI 316L stainless steel of mid-thickness (thickness ranging 6–13 mm). 316L plates of 10-mm thickness were jointed using an I-groove in a single pass without filler metal. The effects of welding parameters on the fusion zone profile were investigated. The weld properties, including mechanical properties, microstructure, and corrosion resistance, were analyzed. The primary weld microstructures were austenite and δ-ferrite. The tensile strength and impact property of the weld were almost the same as those of the base metal, while the corrosion resistance of the weld was even better than that of the base metal. High-quality 316L stainless steel joints can be realized through K-TIG welding with high productivity and low processing cost. The practical application of K-TIG welding to join mid-thickness workpieces in industry is well demonstrated and an ideal process for welding AISI 316L of mid-thickness with high efficiency and low cost is presented.  相似文献   

16.
Depending on the nature of the working medium and working conditions, corrosive and cavitation damage shall arise to pump’s components. In industrial applications the corrosion-reducing coatings are sprayed on hydraulic components. But it is questionable whether such products actually do help under wear or cavitation loads or not. Abrasive jet wear tests were carried out to determine the wear resistance of coating materials: polymers and ceramics, cast iron, and steel of various types. The samples were loaded for five hours, and finally the wear depth was measured as a determining indicator of the sample’s wear resistance. Results of investigation on anti-erosion performance of epoxy resin, ceramic and Polyurethane (PU) coatings brushed on alloy steel surface were also presented. Cavitation erosion tests were performed on the ultrasonic rig. The mass loss and surface morphology of the specimens were examined by balance analysis and 3-D laser microscopy, respectively. The investigations showed excellent wear-resisting performance of ceramic coatings, which is better than wear-resistance of stainless steel, cast iron and high chrome alloy steel. But the excellent wear-resisting performance could not guarantee a good erosion-resisting performance. The ceramic coatings’ anti-erosion performances were inferior to that of gray cast iron, and hardly comparable to those of stainless steels. The basic factors that influenced coating’s cavitation erosion endurance were adhesion and thickness of coatings. Analysis of coating’s degradation mechanism showed that PU coatings could withstand longer incubation period thus enhancing the materials’ cavitation erosion resistance. Several practical cases were analyzed, showing some guidance for coatings’ application.  相似文献   

17.
This paper describes the failure of stainless steel screen mesh grade AISI 316L after being in service for only 8 months. The characterization methods included visual examination, optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and metallography. The results showed that the screen mesh failed by pitting corrosion and subsequent corrosion fatigue cracking. Pitting was initiated by the attack of chlorides from PVC powder and service environment as well as the action of excessive wear. Subsequent corrosion fatigue cracking arose from the presence of chlorides along with the residual and cyclic stress concentration at the pits. Failure prevention can be achieved by annealing after wire drawing, periodic surface cleaning, and proper material selection.  相似文献   

18.
The article explores an evolution of a microstructure in AISI 420 martensitic stainless steel during selective laser melting. Several upper layers had hardness of 750 HV and contained 21 ± 12 vol.% austenite phase. The final bulk microstructure consisted of thermally decomposed martensite with hardness of 500–550 HV and unusually high, 57 ± 8 vol.%, amount of austenite. Obtained results indicate that during manufacturing a partitioning and austenite reversion took place, owing to the thermal cycling of the inner regions during manufacturing. Numerical simulation was found plausible to analyze and explain thermally activated processes that occurred in situ. Results of numerical simulation of the thermal cycles in dependence on the processing parameters suggested a possibility to control the thermal processes by variation of the laser energy input.  相似文献   

19.
The use of austenitic stainless steel type AISI 317L has increased in the last years, in substitution to AISI 316L and other austenitic grades. The higher Mo content (3.0 wt.%. at least) gives higher corrosion resistance to AISI 317L. However, some concern arises when this material is selected to high temperature process services in refineries. Microstructural changes such as chromium carbide precipitation and sigma phase formation may occur in prolonged exposure above 450 °C. In this work, the microstructure evolution of AISI 317L steel during aging at 550 °C was analyzed. Thermodynamic calculations with Thermocalc® and detailed microstructural analysis were performed in steel plate base metal and in weld metal produced by GTAW process. The aging for 200, 300 and 400 h promoted gradual embrittlement and deterioration of corrosion resistance of both weld and base metal. The results show that the selection of AISI 317L steel to services where temperatures can reach 550 °C is not recommended.  相似文献   

20.
Duplex austenite–ferrite stainless steels were prepared from the premixes of 316L and 434L stainless steel atomized powders. Pronounced densification was observed after 1350°C sintering in hydrogen. 316L-60w/o 434L steel composition exhibited maximum transverse rupture strength, while 40 and 60w/o 434L containing compositions showed total immunity in 1N H2SO4 even after a exposure time of 360 h. Anodic polarization curves also suggest high-corrosion resistance of those two compositions. Magnetic coercivity decreased with increase in sintering temperature while magnetic saturation follows the reverse trend. Wear resistance of the duplex stainless steels under sliding condition was in between the straight steels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号