首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TiAlSiN/Si3N4 multilayer coatings which have different separate layer thicknesses of TiAlSiN or Si3N4 were deposited onto glass sheets, single-crystal silicon wafers and polished WC-Co substrates by reactive magnetron co-sputtering. The morphology, crystalline structure and thickness of the as-prepared multilayer coatings were characterized by TEM, SEM, XRD and film thickness measuring instrument. The mechanical properties of the coatings were evaluated by a nanoindenter. The effects of monolayer thickness on the microstructure and properties of TiAlSiN/Si3N4 multilayer coatings were explored. The coatings showed the highest hardness when the thickness of Si3N4 and TiAlSiN monolayers was 0.33 nm and 5.8 nm, respectively. The oxidation characteristics of the coatings were studied at temperatures ranging from 700 °C to 900 °C for oxidation time up to 20 h in air. It was found that the coatings displayed good oxidation resistance.  相似文献   

2.
Preparation of the Ti3Si1−xAlxC2 solid solution with x = 0.2-0.8 was investigated by self-propagating high-temperature synthesis (SHS) using TiC-, SiC-, and Al4C3-containing powder compacts. Due to the variation of reaction exothermicity with sample stoichiometry, the combustion temperature and reaction front velocity decreased with increasing Al content of Ti3Si1−xAlxC2 for the TiC- and Al4C3-added samples, but increased for the samples with SiC. In contrast to the formation of Ti3(Si,Al)C2 as the dominant phase for the TiC- and SiC-added samples, TiC was identified as the major constituent in the final products of samples adopting Al4C3. In addition, the evolution of Ti3(Si,Al)C2 was improved by increasing the Al content of the TiC- and SiC-added powder compacts, but deteriorated considerably upon the increase of Al4C3 in the Al4C3-containing sample.  相似文献   

3.
Nanocomposite coatings of CrN/Si3N4 and CrAlN/Si3N4 with varying silicon contents were synthesized using a reactive direct current (DC) unbalanced magnetron sputtering system. The Cr and CrAl targets were sputtered using a DC power supply and the Si target was sputtered using an asymmetric bipolar-pulsed DC power supply, in Ar + N2 plasma. The coatings were approximately 1.5 μm thick and were characterized using X-ray diffraction (XRD), nanoindentation, X-ray photoelectron spectroscopy and atomic force microscopy. Both the CrN/Si3N4 and CrAlN/Si3N4 nanocomposite coatings exhibited cubic B1 NaCl structure in the XRD data, at low silicon contents (< 9 at.%). A maximum hardness and elastic modulus of 29 and 305 GPa, respectively were obtained from the nanoindentation data for CrN/Si3N4 nanocomposite coatings, at a silicon content of 7.5 at.%. (cf., 24 and 285 GPa, respectively for CrN). The hardness and elastic modulus decreased significantly with further increase in silicon content. CrAlN/Si3N4 nanocomposite coatings exhibited a hardness and elastic modulus of 32 and 305 GPa, respectively at a silicon content of 7.5 at.% (cf., 31 and 298 GPa, respectively for CrAlN). The thermal stability of the coatings was studied by heating the coatings in air for 30 min in the temperature range of 400-900 °C. The microstructural changes as a result of heating were studied using micro-Raman spectroscopy. The Raman data of the heat-treated coatings in air indicated that CrN/Si3N4 and CrAlN/Si3N4 nanocomposite coatings, with a silicon content of approximately 7.5 at.% were thermally stable up to 700 and 900 °C, respectively.  相似文献   

4.
Preparation of (α + β)-SiAlON composites from the powder compacts of Si, Si3N4, SiO2, Al, and AlN was investigated by self-propagating high-temperature synthesis (SHS) in nitrogen of 2.17 MPa. Test samples adopted not only pure α- and β-Si3N4, but also a mixture of (α + β)-Si3N4. The combustion temperature and flame-front propagation velocity decreased with increasing ratio of Si/Si3N4, but they increased with proportion of α/β-Si3N4. For the sample containing pure α-Si3N4, the synthesis reaction yielded only α-SiAlON with various morphologies including equiaxed crystals, elongated grains, and fine whiskers. As a mixture of (α + β)-Si3N4 was employed, the resulting products were (α + β)-SiAlON composites, within which the content of β-SiAlON increased with increasing β-Si3N4. For the sample adopting 100% β-Si3N4, comparable amounts of α- and β-SiAlON were produced. Additionally, the morphology of (α + β)-SiAlON composites was dominated by elongated grains with a high aspect ratio.  相似文献   

5.
Si3N4-TiN nano-composites were fabricated by hot press sintering nano-sized Si3N4 and TiN powders. The microstructure, mechanical properties and thermal shock behavior of Si3N4-TiN nano-composites were investigated. The addition of proper amount TiN particles can significantly increase the flexural strength and the fracture toughness. Si3N4-TiN nano-composites showed both higher critical temperature difference and higher residual strength compared with those of monolithic silicon nitride nano-ceramic when the amount of TiN is less than 15 wt.%. But a further increase in the amount of TiN leaded to a decrease in the thermal shock resistance.  相似文献   

6.
Sintered Mo with the addition of La2O3/MoSi2 was prepared via the process of solid–solid doping + powder metallurgy. X-ray diffraction experiment, hardness test, three-point bending test and high-temperature tensile test were carried out to characterize the samples. The XRD pattern of a typical sample shows that the sintered Mo was mainly composed of Mo, La2O3 and Mo5Si3. Mo5Si3 was probably formed through the reaction between MoSi2 and the Mo matrix. Densities and fracture toughnesses of both doped Mo and pure Mo were measured and contrasted. Sintered Mo with the addition of 0.2 wt% La2O3/MoSi2 has the highest toughness, while more addition of La2O3/MoSi2 has smaller effect on improving toughness or even embrittles Mo. The results of three-point bending test and high-temperature tensile test show that the bending strength and high-temperature tensile strength of doped Mo are both higher than those of pure Mo. The formation of Mo5Si3 improves the high-temperature strength. The La2O3/Mo5Si3 dispersed in the Mo matrix refined the grains, and thus strengthened the Mo matrix by dispersion strengthening and grain refinement.  相似文献   

7.
Preparation of Yb α-SiAlON was investigated by self-propagating high-temperature synthesis (SHS) from α-Si3N4- and α-Si3N4/AlN-diluted powder compacts under nitrogen of 2.17 MPa. For the AlN-free samples, the molar ratio of Si3N4/Si varies between 0.22 and 0.5. The starting stoichiometry of the AlN-added samples comprises a constant proportion of Si3N4/Si equal to 0.22, but a broad range of AlN/Al from 0.33 to 1.0. The self-sustaining combustion wave propagated in the spinning mode on account of highly diluted samples adopted in this study. The overall reaction exothermicity increases with Si3N4/Si ratio for the AlN-free samples, while decreases with AlN/Al ratio for the AlN-added powder compacts. As a result, the amount of unreacted Si left in the final product was significantly reduced and the formation of nearly single-phase Yb α-SiAlON was achieved in the sample with Si3N4/Si = 0.5. Moreover, the growth of elongated α-SiAlON grains was enhanced in the samples with high contents of Si3N4. In contrast, the nitridation of Si was only improved to a certain extent with the addition of AlN and no further improvement was attained by increasing the AlN content. Due to the lack of sufficient liquid phases during combustion and the weak reaction exothermicity, the samples with high contents of AlN were inclined to produce α-SiAlON grains in a fine equiaxed form.  相似文献   

8.
MoSi2/WSi2 nanocrystalline powder has been successfully synthesized by the mechanical-assistant combustion synthesis method. This method includes a ball-milling process followed by combustion synthesis. The composition and microstructure of the as-milled powder mixture were detected by X-ray diffraction and scanning electron microscopy analyses. Their results show that the Mo(W) solid solution and Si nanocrystals could be obtained during the ball-milling process. Compared with normal powder mixture (Mo + Si + W), it could be easily ignited and high maximum combustion temperature was achieved. It was also confirmed that MoSi2/WSi2 solid solution powder with nanometric structure could be prepared through combustion synthesis method from the mechanical activated powder mixture.  相似文献   

9.
Preparation of the ternary carbide Cr2AlC was conducted by combustion synthesis in the mode of self-propagating high-temperature synthesis (SHS) from the Cr2O3-Al-Al4C3 powder compact. Effects of the contents of Al and Al4C3 on the product composition and combustion behavior were studied by formulating the reactant mixture with a stoichiometric proportion of Cr2O3:Al:Al4C3 = 3:5x:y, where x and y varied from 1.0 to 1.5. When compared to those of the powder compact with Cr2O3:Al:Al4C3 = 3:5:1 (i.e., x = y = 1.0), the combustion temperature and reaction front velocity increased with content of Al, but decreased with that of Al4C3. Besides Cr2AlC and Al2O3, the final products always contained a secondary phase Cr7C3 that was substantially reduced by adopting additional Al and Al4C3 in the reactant compacts. For the sample with Cr2O3:Al:Al4C3 = 3:7.5:1 (x = 1.5), solid state combustion reached a peak temperature of 1245 °C and yielded Cr2AlC with a trivial amount of Cr7C3. Although Cr7C3 was lessened by introducing extra Al4C3, the increase of Al4C3 from y = 1.1 to 1.5 produced almost no further reduction of Cr7C3 in the final product. This is partly attributed to the low combustion temperature in the range of 1065-1095 °C for the samples with additional Al4C3, and in part, due to the role of Al4C3 which might react with Cr to form Cr7C3, Cr2Al, and Cr2AlC.  相似文献   

10.
LiFePO4 thin films have been sputtered from a pure LiFePO4 target onto Ag/SS, Ag/Si3N4/Si and Si3N4/Si substrates. All of the deposited films were annealed at 973 K for 1 hr in H2/Ar (5 %) atmosphere. Substrate induced microstructural and crystallographic evolutions have been observed by a scanning electron microscope and X-ray diffraction. Energy dispersion spectra and X-ray photoelectron spectra revealed that Ag was mixed in the LiFePO4 films deposited on Ag under layers. Ceramic metal composite thin films were obtained. The film conductivity (1 × 10− 3 Scm− 1) is therefore elevated by an order of six, compared with pure LiFePO4 (10− 9 Scm− 1). The electrochemical measurements of the LiFePO4-Ag films showed a flat plateau at 3.4 V (v.s. Li/Li+) and a reversible capacity of 80 mAh/g. Optimization of Ag contents may further improve the discharge capacity.  相似文献   

11.
Mn4+, La3+ and Ho3+ doped MgAl2Si2O8-based phosphors were first synthesized by solid state reaction. They were characterized by thermogravimetry (TG), differential thermal analysis (DTA), X-ray powder diffraction (XRD), photoluminescence (PL) and scanning electron microscopy (SEM). The phosphors were obtained at about 1300 °C. They showed broad red and fuchsia-pink emission bands in the range of 610-715 nm and had a different maximum intensity when activated by UV illumination. Such a fuchsia-pink emission can be attributed to the intrinsic d-d transitions of Mn4+.  相似文献   

12.
The phase relation, microstructure, Curie temperatures (TC), magnetic transition, and magnetocaloric effect of (Gd1−xErx)5Si1.7Ge2.3 (x = 0, 0.05, 0.1, 0.15, and 0.2) compounds prepared by arc-melting and then annealing at 1523 K (3 h) using purity Gd (99.9 wt.%) are investigated. The results of XRD patterns and SEM show that the main phases in those samples are mono-clinic Gd5Si2Ge2 type structure. With increase of Er content from x = 0 to 0.2, the values of magnetic transition temperatures (TC) decrease linearly from 228.7 K to 135.3 K. But the (Gd1−xErx)5Si1.7Ge2.3 compounds display large magnetic entropy near their transition temperatures in a magnetic field of 0-2 T. The maximum magnetic entropy change in (Gd1−xErx)5Si1.7Ge2.3 compounds are 24.56, 14.56, 16.84, 14.20, and 13.22 J/kg K−1 with x = 0, 0.05, 0.1, 0.15, and 0.2, respectively.  相似文献   

13.
Amorphous carbon nitride (a-CNx) coatings were deposited on Si3N4 disks by an ion beam assisted deposition system. The composition, structure and hardness of the a-CNx coatings were characterized by Auger electronic spectroscopy, Raman spectroscopy and nano-indentation tester, respectively. The influences of normal load and sliding speed on the friction coefficients and the specific wear rates for the a-CNx/Si3N4 tribo-pairs were investigated and analyzed synthetically by ball-on-disk tribometer. The worn surfaces were observed by optical microscope. The results showed that the a-CNx coatings contained 12 at.% nitrogen, and their structure was a mixture of sp2and sp3 bonds. The a-CNx coatings’ nanohardness was 29 GPa. The influence of sliding speed on the friction coefficients and the specific wear rate of the CNx coatings was more obvious than that of normal load. The friction coefficients and the specific wear rate of the CNx coatings decreased as the sliding speed increased. At a sliding speed higher than 0.1 m/s, the friction coefficients were less than 0.04. The specific wear rates of the a-CNx coatings were higher than those of Si3N4 balls at a sliding speed below 0.1 m/s, while the specific wear rates of the a-CNx coatings and the Si3N4 balls all fluctuated around a lower level of 10− 8 mm3/Nm as the sliding speed increased beyond 0.2 m/s. To describe the wear behavior of a-CNx coatings sliding against Si3N4 balls in water with normal loads of 3-15 N and sliding speeds of 0.05-0.5 m/s, the wear-mechanism map for the a-CNx/Si3N4 tribo-pairs in water was developed.  相似文献   

14.
The magnetization of a Dy2Fe14Si3 single crystal was measured at 4.2 K in pulsed fields up to 51 T along the principal axes. The compound orders ferrimagnetically at 500 K, has a spontaneous magnetic moment of 8 μB/f.u. (at 4.2 K) and exhibits a very large magnetic anisotropy, 〈1 0 0〉 being the easy axis. In fields applied along the 〈1 0 0〉 and 〈1 2 0〉 axes, field-induced phase transitions are observed at 33 T and at 39 T, respectively. The c-axis magnetization curve crosses the easy-axis curve at 19 T. At higher fields, for all directions, the magnetization continues to increase due to further bending of the sublattice moments. Temperature evolution of magnetic anisotropy and magnetic hysteresis are discussed as well.  相似文献   

15.
Preparation of the ternary carbide Ti2AlC was conducted by combustion synthesis in the mode of self-propagating high-temperature synthesis (SHS) from the elemental powder compacts of Ti:Al:C = 2:1:1, TiC-containing samples with TiC of 6.67–14.3 mol%, and Al4C3-containing samples with Al4C3 of 1.96–10 mol%. Effects of TiC and Al4C3 addition were studied on combustion characteristics and the degree of phase conversion. Due to the growth of laminated Ti2AlC grains, the reactant compact was subjected to an axial elongation during the SHS process. Because the addition of TiC and Al4C3 led to a decrease in the reaction temperature, the flame-front propagation velocity was correspondingly reduced for the TiC- and Al4C3-containing samples when compared with the elemental reactants. Based upon the XRD analysis, formation of Ti2AlC along with a secondary phase TiC was identified in the synthesized products. The grains of Ti2AlC are typically plate-like with a size of 10–20 μm and several laminated Ti2AlC grains form a layered structure. The content of Ti2AlC yielded from the elemental powder compacts is about 85 wt%. The addition of TiC was found to facilitate the formation mechanism and therefore to enhance the extent of Ti2AlC conversion approaching 90 wt%. As a result of the reduced exothermicity of the reaction, however, the content of Ti2AlC decreased slightly in the products synthesized from the Al4C3-added samples.  相似文献   

16.
Alumina matrix composites containing 5 and 10 wt% of ZrO2 were sintered under 100 MPa pressure by spark plasma sintering process. Alumina powder with an average particle size of 600 nm and yttria-stabilized zirconia with 16 at% of Y2O3 and with a particle size of 40 nm were used as starting materials. The influence of ZrO2 content and sintering temperature on microstructures and mechanical properties of the composites were investigated. All samples could be fully densified at a temperature lower than 1400 °C. The microstructure analysis indicated that the alumina grains had no significant growth (alumina size controlled in submicron level 0.66-0.79 μm), indicating that the zirconia particles provided a hindering effect on the grain growth of alumina. Vickers hardness and fracture toughness of composites increased with increasing ZrO2 content, and the samples containing 10 wt% of ZrO2 had the highest Vickers hardness of 18 GPa (5 kg load) and fracture toughness of 5.1 MPa m1/2.  相似文献   

17.
A novel method for preparation of nano-crystalline gadolinium aluminate (GdAlO3) powder, based on combustion synthesis, is reported. It was observed that aluminium nitrate and gadolinium nitrate exhibit different combustion characteristics with respect to urea, glycine and β-alanine. While urea was proven to be a suitable fuel for direct formation of crystalline α-Al2O3 from its nitrate, glycine and β-alanine are suitable fuels for gadolinium nitrate for preparation of its oxide after combustion reaction. Based on the observed chemical characteristics of gadolinium and aluminium nitrates with respect to above mentioned fuels for the combustion reaction, the fuel mixture composition could be predicted that could lead to phase pure perovskite GdAlO3 directly after the combustion reaction without any subsequent calcination step. The use of single fuel, on the other hand, leads to formation of amorphous precursor powders that call for subsequent calcination for the formation of crystalline GdAlO3. The powders produced directly after combustion reactions using fuel mixtures were found to be highly sinterable. The sintering of the powders at 1550 °C for 4 h resulted in GdAlO3 with sintered density of more than 95%. T.D.  相似文献   

18.
The effects of K2O and Li2O-doping (0.5, 0.75 and 1.5 mol%) of Fe2O3/Cr2O3 system on its surface and the catalytic properties were investigated. Pure and differently doped solids were calcined in air at 400-600 °C. The formula of the un-doped calcined solid was 0.85Fe2O3:0.15Cr2O3. The techniques employed were TGA, DTA, XRD, N2 adsorption at −196 °C and catalytic oxidation of CO oxidation by O2 at 200-300 °C. The results revealed that DTA curves of pure mixed solids consisted of one endothermic peak and two exothermic peaks. Pure and doped mixed solids calcined at 400 °C are amorphous in nature and turned to α-Fe2O3 upon heating at 500 and 600 °C. K2O and Li2O doping conducted at 500 or 600 °C modified the degree of crystallinity and crystallite size of all phases present which consisted of a mixture of nanocrystalline α- and γ-Fe2O3 together with K2FeO4 and LiFe5O8 phases. However, the heavily Li2O-doped sample consisted only of LiFe5O8 phase. The specific surface area of the system investigated decreased to an extent proportional to the amount of K2O and Li2O added. On the other hand, the catalytic activity was found to increase by increasing the amount of K2O and Li2O added. The maximum increase in the catalytic activity, expressed as the reaction rate constant (k) measured at 200 °C, attained 30.8% and 26.5% for K2O and Li2O doping, respectively. The doping process did not modify the activation energy of the catalyzed reaction but rather increased the concentration of the active sites without changing their energetic nature.  相似文献   

19.
In order to enhance luminescence properties of Eu2+-doped ternary nitride phosphor for white light-emitting diodes (LEDs), Sr2Si5N8:Eu2+ phosphors with different Eu2+ concentrations were synthesized using a multi-step heat treatment. Impurities and luminescence properties of prepared Sr2Si5N8:Eu2+ phosphors were investigated using X-ray diffraction (XRD) and photoluminescence spectroscopy. Excitation spectra of Sr2Si5N8:Eu2+ phosphor showed broad excitation bands by both UV and blue light. Emission peak positions in spectra were red-shifted from 613 to 671 nm as Eu2+ ion concentrations increased. Phosphors following a multi-step heat treatment showed excellent luminescence properties. These included high emission intensity and very low thermal quenching compared to measurements using a commercially available YAG:Ce3+ phosphor.  相似文献   

20.
The phase relation, microstructural, hysteresis, Curie temperature, and magnetocaloric effects of LaFe11.6Si1.4Bx (x = 0.1, 0.2, 0.3, 0.4, and 0.5) prepared by arc-melting and then annealed at 1373 K (1.5 h) + 1523 K (5 h) were investigated. It was found that the main phase is NaZn13-type phase, the impurity phases include α-Fe, Fe2B, and small amount of La5Si3. The boron atom can dissolve into the crystal lattice of LaFe11.6Si1.4Bx to form interstitial solid solution, but the content of solid solution is not up to x = 0.5. For LaFe11.6Si1.4Bx (x = 0.1, 0.3, and 0.5) compounds, the Curie temperature TC increases from 190.6 to 198.3 K with the increasing of B content from x = 0.1 to 0.5. The first order magnetic transition behavior becomes weaker and magnetic entropy change ΔSM (T, H) drops with the increasing of B content, respectively. However, ΔSM (T, H) still remains a large value, 11.18 J/kg K, when x reaches to 0.5 at 0-2 T. An attractive feature is that both thermal and magnetic hysteresis can be reduced remarkably by introducing B. The maximum magnetic hysteresis loss near TC drops from 22.52 to 4.95 J/kg when the content of B increases from x = 0.1 to 0.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号