首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This paper deals with the problem of the robustly absolute stability for neutral‐type Lur'e systems with mixed time‐varying delay. By combining the piecewise analysis theory with the reciprocally convex method and Wirtinger‐based inequality technology, some new delay‐dependent stability criteria are proposed via a modified Lyapunov‐Krasovskii functional (LKF) approach. The stability conditions can be solved by using standard linear matrix inequality (LMI) convex optimization solvers. The criteria are less conservative than some previous ones. Three numerical examples are presented to show the effectiveness of the proposed approach.  相似文献   

2.
In this paper, the problem of exponential stability criteria for neural networks with discrete and distributed time-varying delays are considered. By dividing the discrete delay interval into multiple segments and choosing a new class of Lyapunov functional which contains tripe-integral terms, some new delay-dependent stability criteria are derived in terms of linear matrix inequalities. The obtained criteria are less conservative because free-weighting matrices method and a convex optimization approach are considered. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

3.
This paper investigates the stochastic stability problem for a class of neutral-type Markov jump neural networks with additive time-varying delays. Firstly, to derive a tighter lower bound of the reciprocally convex quadratic terms, a new reciprocally convex combination inequality is established by using parameters transformation approach. Secondly, by fully considering the peculiarity of various time-varying delays and Markov jumping parameters, an eligible stochastic Lyapunov–Krasovskii functional is constructed. Then, by employing the new reciprocally convex combination inequality and other analytical techniques, some novel stability criteria are provided in the forms of linear matrix inequalities. Finally, four illustrated examples are given to verify the effectiveness and feasibility of the proposed methods.  相似文献   

4.

This paper is concerned with the robust stability for neutral-type Lur’e system with mixed time-varying delays. By combining the delay-fraction theory with the reciprocally convex method andWirtinger-based inequality technology, some new delay-derivative-dependent stability criteria are derived via a modified Lyapunov-Krasovskii functional (LKF) approach. The criteria are less conservative than some previous ones.

  相似文献   

5.

针对一类存在泛数有界不确性的区间变时滞线性系统, 利用Lyapunov-Krasovskii (L-K) 泛函方法并结合线性矩阵不等式(LMI) 技术建立一种新的保守性更低的鲁棒稳定性判据. 首先基于时滞分割方法将时滞区间均分成N 等分, 针对不同的子区间构造合适的L-K 泛函; 然后在各自的分割区间采用保守性较小的积分不等式处理泛函沿时间的导数, 基于凸组合技术建立了LMI 形式的时滞相关稳定性新判据; 最后通过数值实例验证了结论的有效性.

  相似文献   

6.
This paper discusses the neutral system with time-varying delay. Firstly, by developing a delayed decomposition approach and introducing integral inequality approach, the information of the delayed plant states can be taken into full consideration, and new delay-dependent sufficient stability criteria are obtained in terms of linear matrix inequalities (LMIs). Then, based on the Lyapunov method, delay-dependent stability criteria are devised by taking the relationship between the terms in the Leibniz–Newton formula into account. The criteria are derived in terms of LMIs, which can be easily solved by using various convex optimization algorithms. Three illustrative numerical examples are given to show the less conservatism of our obtained results and the effectiveness of the proposed method.  相似文献   

7.
This paper investigates the robust stability problem for a class of uncertain neutral-type delayed systems. The systems under consideration contain parameter uncertainties and time-varying delays. We aim at designing less conservative robust stability criteria for such systems. A new second-order reciprocally convex inequality is first proposed in order to deal with double integral terms. Then, by constructing a new Lyapunov– Krasovskii functional and employing the improved Wirtinger-based integral inequality and the reciprocally convex combination approaches, novel stability criteria are obtained. Moreover, the stability conditions for standard time-delay system are obtained as by-product results. Comparisons in three numerical examples illustrate the effectiveness of our results.  相似文献   

8.
This paper studies the stability of linear systems with interval time‐varying delays. By constructing a new Lyapunov–Krasovskii functional, two delay‐derivative‐dependent stability criteria are formulated by incorporating with two different bounding techniques to estimate some integral terms appearing in the derivative of the Lyapunov–Krasovskii functional. The first stability criterion is derived by using a generalized integral inequality, and the second stability criterion is obtained by employing a reciprocally convex approach. When applying these two stability criteria to check the stability of a linear system with an interval time‐varying delay, it is shown through some numerical examples that the first stability criterion can provide a larger upper bound of the time‐varying delay than the second stability criterion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This paper deals with delay-dependent stochastic stability and bounded real lemma(BRL)for Markovian jump linear systems with interval time-varying delays.By constructing some new Lyapunov functionals and using the Jensen’s integral inequality method,the free weighting matrix method,the convex combination method and the delay decomposition approach integratedly,some less conservative delay-dependent stability criteria and BRL are established. Numerical examples are given to show the effectiveness of the proposed method.  相似文献   

10.

This paper focuses on the issue of robust stability analysis for recurrent neural networks (RNNs) with leakage delay. By constructing a novel Lyapunov–Krasovskii functional together with the reciprocally convex approach and the free-weighting matrix technique, some less conservative stability criteria in terms of linear matrix inequalities for RNNs are derived. The new contribution of this paper is that a novel delay-partitioning method is proposed, and some new zero equalities are introduced. Finally, several examples are given to demonstrate the effectiveness of the proposed methods. The simulated results reveal that the leakage delay has great influence on the dynamical systems, and it cannot be neglected.

  相似文献   

11.
针对时变时滞系统稳定性问题, 在考虑非线性扰动的情况下, 为了降低时变时滞系统稳定性判据的保守性, 以改进的Jensen 不等式, Wirtinger型双重积分不等式以及优化凸组合技术为基础, 构造增广的Lyapunov-Krasovskii 泛函, 得到了新的时滞相关稳定性判据. 最后, 通过数值仿真对比可知, 该稳定性判据具有较小的保守性和良好的鲁棒性.  相似文献   

12.
This paper investigates the robust ${H}_{infty }$ control for Takagi--Sugeno (T--S) fuzzy systems with interval time-varying delay. By employing a new and tighter integral inequality and constructing an appropriate type of Lyapunov functional, delay-dependent stability criteria are derived for the control problem. Because neither any model transformation nor free weighting matrices are employed in our theoretical derivation, the developed stability criteria significantly improve and simplify the existing stability conditions. Also, the maximum allowable upper delay bound and controller feedback gains can be obtained simultaneously from the developed approach by solving a constrained convex optimization problem. Numerical examples are given to demonstrate the effectiveness of the proposed methods.   相似文献   

13.
This paper presents a computational approach to stability analysis of nonlinear and hybrid systems. The search for a piecewise quadratic Lyapunov function is formulated as a convex optimization problem in terms of linear matrix inequalities. The relation to frequency domain methods such as the circle and Popov criteria is explained. Several examples are included to demonstrate the flexibility and power of the approach  相似文献   

14.

This paper deals with a robust stability problem for uncertain Lur’e systems with time-varying delays and sector-bounded nonlinearities. An improved delay-dependent robust stability criterion is proposed via a modified Lyapunov-Krasovskii functional (LKF) approach. Firstly, a modified LKF consisting of delay-dependent matrices and double-integral items under two delay subintervals is constructed, thereby making full use of the delay and its derivative information. Secondly, the stability criteria can be expressed as convex linear matrix inequality (LMI) via the properties of quadratic function application. Thirdly, to further reduce the conservatism of stability criteria, the quadratic generalized free-weighting matrix inequality (QGFMI) is used. Finally, some numerical examples, including the Lur’e system and the general linear time-delayed system, are presented to show the improvement of the proposed approach.

  相似文献   

15.
This paper is concerned with the problem of stability analysis for continuous‐time/discrete‐time systems with interval time‐varying delay. Based on the idea of partitioning the delay interval into l nonuniform subintervals, new Lyapunov functionals are established. By utilizing the reciprocally convex approach to deal with the delay information in each subinterval, sufficient stability conditions are proposed in terms of linear matrix inequalities. Based on these criteria, the optimal partitioning method is given on the basis of the genetic algorithm. Finally, the reduced conservatism of the results in this paper is illustrated by numerical examples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This paper investigates the problem of the sampled-data extended dissipative control for uncertain Markov jump systems. The systems considered are transformed into Markov jump systems with polytopic uncertainties and sawtooth delays by using an input delay approach. The focus is on the design of a mode-independent sampled-data controller such that the resulting closed-loop system is mean-square exponentially stable with a given decay rate and extended dissipative. A novel exponential stability criterion and an extended dissipativty condition are established by proposing a new integral inequality. The reduced conservatism of the criteria is demonstrated by two numerical examples. Furthermore, a sufficient condition for the existence of a desired mode-independent sampled-data controller is obtained by solving a convex optimisation problem. Finally, a resistance, inductance and capacitance (RLC) series circuit is employed to illustrate the effectiveness of the proposed approach.  相似文献   

17.
In this paper, the problem of exponential stability analysis and the design of sampled‐data nonlinear systems have been studied using a polytopic linear parameter‐varying approach. By means of modeling a new double‐layer polytopic formulation for nonlinear sampled‐data systems, a modified form of piecewise continuous Lyapunov‐Krasovskii functional is proposed. This approach provides less conservative robust exponential stability conditions by using Wirtinger's inequality in terms of linear matrix inequalities. The distances between the real continuous parameters of the plant and the measured parameters of the controller are modeled by convex sets, and the analysis/design conditions are given at the vertices of some hyper‐rectangles. In order to get tractable linear matrix inequality conditions for the stabilization problem, we performed relaxation by introducing a slack variable matrix. Under the new stability criteria, an approach is introduced to synthesize a sampled‐data polytopic linear parameter‐varying controller considering some constraints on the location of the closed‐loop poles in the presence of uncertainties on the varying parameters. It is shown that the proposed controller guarantees the exponential stability of the closed‐loop system for aperiodic sampling periods smaller than a known value, ie, maximum allowable sampling period. Finally, the effectiveness of the proposed approach is verified and compared with some state‐of‐the‐art existing approaches through numerical simulations.  相似文献   

18.
This paper is concerned with improved stability criteria for uncertain T-S fuzzy systems with interval time-varying delay by means of a new (m,N)-delay-partitioning approach. Based on an appropriate augmented LKF established in the framework of state vector augmentation, some tighter bounding inequalities (Seuret-Wirtinger’s integral inequality, Peng-Park’s integral inequality and the reciprocally convex approach) have been employed to deal with (time-varying) delay-dependent integral items of the derivative of LKF, therefore, less conservative delaydependent stability criteria can be obtained on account of none of any useful time-varying items are arbitrarily ignored. It’s worth mentioning that, when the delay-partitioning number m is fixed, less conservatism can be achieved by increase of another delay-partitioning number N, but without increasing any computing burden. Finally, one numerical example is provided to show that the proposed conditions are less conservative than existing ones.  相似文献   

19.
This paper studies the problem of stabilization criteria for systems with two additive time‐varying delays. First, the delay‐dependent stability condition for the systems is established through computing the more general Lyapunov functional. The Lyapunov functional is constructed by making full use of the property and the information of the systems, and the condition has advantages over the existing ones in the skillful combination of the delay decomposition and the reciprocal convex approach. Second, considered to be more flexible for the controller design with the introduced positive scalar, a new controller method is presented. Finally, two examples are provided to demonstrate the advantage of the results in this paper.  相似文献   

20.

The objective of this paper is to analyze the stability analysis of neutral-type neural networks with additive time-varying delay and leakage delay. By constructing a suitable augmented Lyapunov-Krasovskii functional with triple and four integral terms, some new stability criteria are established in terms of linear matrix inequalities, which is easily solved by various convex optimization techniques. More information of the lower and upper delay bounds of time-varying delays are used to derive the stability criteria, which can lead less conservative results. The obtained conditions are expressed with linear matrix inequalities (LMIs) whose feasible can be checked easily by MATLAB LMI control toolbox. Finally, two numerical examples are given to demonstrate the effectiveness of the proposed method.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号