首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a new global optimization metaheuristic called Galactic Swarm Optimization (GSO) inspired by the motion of stars, galaxies and superclusters of galaxies under the influence of gravity. GSO employs multiple cycles of exploration and exploitation phases to strike an optimal trade-off between exploration of new solutions and exploitation of existing solutions. In the explorative phase different subpopulations independently explore the search space and in the exploitative phase the best solutions of different subpopulations are considered as a superswarm and moved towards the best solutions found by the superswarm. In this paper subpopulations as well as the superswarm are updated using the PSO algorithm. However, the GSO approach is quite general and any population based optimization algorithm can be used instead of the PSO algorithm. Statistical test results indicate that the GSO algorithm proposed in this paper significantly outperforms 4 state-of-the-art PSO algorithms and 4 multiswarm PSO algorithms on an overwhelming majority of 15 benchmark optimization problems over 50 independent trials and up to 50 dimensions. Extensive simulation results show that the GSO algorithm proposed in this paper converges faster to a significantly more accurate solution on a wide variety of high dimensional and multimodal benchmark optimization problems.  相似文献   

2.
This paper proposes a multi-objective optimal location of Automatic Voltage Regulators (AVRs) in distribution systems at the presence of Distributed Generators (DGs) by a Fuzzy Adaptive Particle Swarm Optimization (FAPSO) algorithm. The proposed algorithm utilizes an external repository to save founded Pareto optimal solutions during the search process. The proposed technique allows the decision maker to select one of the Pareto optimal solutions (by trade-off) for different applications. The performance of the suggested algorithm on a 70-bus distribution network in comparison with other evolutionary methods such as Genetic algorithm and PSO is extraordinary.  相似文献   

3.
针对群搜索优化(Group Search Optimizer,GSO)算法易陷入局部最优、收敛速度较慢、收敛精度较低等问题,提出一种基于差分策略的群搜索优化(Differential Ranking-based Group Search Optimizer,DRGSO)算法。主要进行两方面改进:1)按照适应度值的大小对种群进行排序,适当增加发现者的数目,使种群能够获得更好的启发式信息,加快了算法的收敛速度,有效地避免了算法陷入局部最优;2)在发现者搜索过程中,引入4种不同的差分变异策略,提高了算法的收敛精度,增强了算法的群体多样性在。11组国际标准测试函数上的实验测试结果显示,与GA,GSO,PSO算法相比,DRGSO算法具有较强的全局搜索能力以及局部资源勘探能力,算法整体收敛性能明显提高。  相似文献   

4.
A new glowworm swarm optimization (GSO) algorithm is proposed to find the optimal solution for multiple objective environmental economic dispatch (MOEED) problem. In this proposed approach, technique for order preference similar to an ideal solution (TOPSIS) is employed as an overall fitness ranking tool to evaluate the multiple objectives simultaneously. In addition, a time varying step size is incorporated in the GSO algorithm to get better performance. Finally, to evaluate the feasibility and effectiveness of the proposed combination of GSO algorithm with TOPSIS (GSO–T) approach is examined in four different test cases. Simulation results have revealed the capabilities of the proposed GSO–T approach to find the optimal solution for MOEED problem. The comparison with own coded weighted sum method incorporated GSO (WGSO) and other methods reported in literatures exhibit the superiority of the proposed GSO–T approach and also the results confirm the potential of the proposed GSO–T approach to solve the MOEED problem.  相似文献   

5.
Distributed generator (DG) is recognized as a viable solution for controlling line losses, bus voltage, voltage stability, etc. and represents a new era for distribution systems. This paper focuses on developing an approach for placement of DG in order to minimize the active power loss and energy loss of distribution lines while maintaining bus voltage and voltage stability index within specified limits of a given power system. The optimization is carried out on the basis of optimal location and optimal size of DG. This paper developed a new, efficient and novel krill herd algorithm (KHA) method for solving the optimal DG allocation problem of distribution networks. To test the feasibility and effectiveness, the proposed KH algorithm is tested on standard 33-bus, 69-bus and 118-bus radial distribution networks. The simulation results indicate that installing DG in the optimal location can significantly reduce the power loss of distributed power system. Moreover, the numerical results, compared with other stochastic search algorithms like genetic algorithm (GA), particle swarm optimization (PSO), combined GA and PSO (GA/PSO) and loss sensitivity factor simulated annealing (LSFSA), show that KHA could find better quality solutions.  相似文献   

6.
Group search optimizer (GSO) is a novel swarm intelligent (SI) algorithm for continuous optimization problem. The framework of the algorithm is mainly based on the producer-scrounger (PS) model. Comparing with ant colony optimization (ACO) and particle swarm optimization (PSO) algorithms, GSO emphasizes more on imitating searching behavior of animals. In standard GSO algorithm, more than 80% individuals are chosen as scroungers, and the producer is the one and only destination of them. When the producer cannot found a better position than the old one in some successive iterations, the scroungers will almost move to the same place, the group might be trapped into local optima though a small quantity of rangers are used to improve the diversity of it. To improve the convergence performance of GSO, an improved GSO optimizer with quantum-behaved operator for scroungers according to a certain probability is presented in the paper. In the method, the scroungers are divided into two parts, the scroungers in the first part update their positions with the operators of QPSO, and the remainders keep searching for opportunities to join the resources found by the producer. The operators of QPSO are utilized to improve the diversity of population for GSO. The improved GSO algorithm (IGSO) is tested on several benchmark functions and applied to train single multiplicative neuron model. The results of the experiments indicate that IGSO is competitive to some other EAs.  相似文献   

7.
This paper proposes a new multi-objective optimization algorithm based on modified teaching–learning-based optimization (MTLBO) algorithm in order to solve the optimal location of automatic voltage regulators (AVRs) in distribution systems at presence of distributed generators (DGs). The objective functions including energy generation costs, electrical energy losses and the voltage deviation are considered in this paper. In the proposed MTLBO algorithm, teacher and learner phases are modified. The considered objective functions are energy generation costs, electrical energy losses and the voltage deviations. The proposed algorithm uses an external repository to save founded Pareto optimal solutions during the search process. Since the objective functions are not the same, a fuzzy clustering method is used to control the size of the repository. The proposed technique allows the decision maker to select one of the Pareto optimal solutions (by compromising) for different applications. The performance of the suggested algorithm on a 70-bus distribution network in comparison with other evolutionary methods such as genetic algorithm (GA), particle swarm optimization (PSO) and TLBO is extraordinary.  相似文献   

8.
In this paper, a novel multi-objective group search optimizer named NMGSO is proposed for solving the multi-objective optimization problems. To simplify the computation, the scanning strategy of the original GSO is replaced by the limited pattern search procedure. To enrich the search behavior of the rangers, a special mutation with a controlling probability is designed to balance the exploration and exploitation at different searching stages and randomness is introduced in determining the coefficients of members to enhance the diversity. To handle multiple objectives, the non-dominated sorting scheme and multiple producers are used in the algorithm. In addition, the kernel density estimator is used to keep diversity. Simulation results based on a set of benchmark functions and comparisons with some methods demonstrate the effectiveness and robustness of the proposed algorithm, especially for the high-dimensional problems.  相似文献   

9.
于长青  王竹荣 《计算机应用》2013,33(11):3102-3106
为克服群搜索(GSO)算法早熟的缺点,提高算法收敛速度,提出一种基于发现者预选择机制的自适应群搜索(PSAGSO)算法。首先,依据发现者追随者模型,采用预选择机制,用倒序变异算子产生新发现者,来引导追随者寻优的方向,有效地维持了群体中个体的多样性;其次,提出一种基于线性递减的动态自适应方法来调整游荡者的分布比例,以提高种群中个体的活力,有利于算法跳出局部最优。通过对12个基准函数进行测试。对于30维函数优化,PSAGSO算法的测试数据优于He等(HE S, WU Q H, SAUNDERS J R. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 973-990)提供的数据;对于300维函数优化问题,PSAGSO算法的性能更佳。实验结果表明,PSAGSO克服了群搜索优化算法的不足,在一定程度上提高了算法的收敛速度和收敛精度。  相似文献   

10.
为提高组搜索优化(GSO)算法的性能,结合混沌方法的全局搜索特性,提出一种新的基于混沌搜索的组搜索优化(CGSO)算法。此方法中,生产者利用混沌搜索方法不断寻找较好的位置;占领者结合当前生产者的位置和自己运动到目前为止的最好位置对自己当前的位置进行更新;徘徊者采用混沌变异方法探索新的位置。该算法运用Logistic映射的初值敏感性扩大搜索范围,利用其全局遍历性进行位置搜索,有效地提高了算法的全局收敛性。采用CGSO、GSO算法对四个典型的函数优化问题进行了仿真实验,仿真结果验证了方法的有效性。  相似文献   

11.
This study proposes a new approach, based on a hybrid algorithm combining of Improved Quantum-behaved Particle Swarm Optimization (IQPSO) and simplex algorithms. The Quantum-behaved Particle Swarm Optimization (QPSO) algorithm is the main optimizer of algorithm, which can give a good direction to the optimal global region and Nelder Mead Simplex method (NM) which is used as a local search to fine tune the obtained solution from QPSO. The proposed improved hybrid QPSO algorithm is tested on several benchmark functions and performed better than particle swarm optimization (PSO), QPSO and weighted QPSO (WQPSO). To assess the effectiveness and feasibility of the proposed method on real problems, it is used for solving the power system load flow problems and demonstrated by different standard and ill-conditioned test systems including IEEE 14, 30 and 57 buses test systems, and compared with the conventional Newton–Raphson (NR) method, PSO and some versions of QPSO algorithms. Furthermore, the proposed hybrid algorithm is proposed for solving load flow problems with considering the reactive limits at generation buses. Simulation results prove the robustness and better convergence of IQPSOS under normal and critical conditions, when conventional load flow methods fail.  相似文献   

12.
In this paper, a hybrid optimizer incorporating particle swarm optimization (PSO) and an enhanced NM simplex search method is proposed to derive an optimal digital controller for uncertain interval systems based on resemblance of extremal gain/phase margins (GM/PM). By combining the uncertain plant and controller, extremal GM/PM of the redesigned digital system and its continuous counterpart can be obtained as the basis for comparison. The design problem is then formulated as an optimization problem of an aggregated error function in terms of deviation on extremal GM/PM between the redesigned digital system having an interval plant and its continuous counterpart, and subsequently optimized by the proposed optimizer to obtain an optimal set of parameters for the digital controller. Thanks to the performance of the proposed hybrid optimizer, frequency-response performances of the redesigned digital system using the digital controller evolutionarily derived by the proposed approach bare a far better resemblance to its continuous-time counter part in comparison to those obtained using existing open-loop discretization methods.  相似文献   

13.
群搜索优化算法(Group Search Optimizer,GSO)是一类基于发现者-加入者(Producer-Scrounger,PS)模型的新型群体随机搜索算法。尽管该算法在解决众多问题中表现优越,但其依然面临着早熟和易陷入局部最优的问题,为此,提出了一种基于一般反向学习策略的群搜索优化算法(GOGSO)。该算法利用反向学习策略来产生反向种群,然后对当前种群和反向种群进行精英选择。通过对比实验表明,该方法效果良好。  相似文献   

14.
Flexible job-shop scheduling problem (FJSP) is an extension of the classical job-shop scheduling problem. Although the traditional optimization algorithms could obtain preferable results in solving the mono-objective FJSP. However, they are very difficult to solve multi-objective FJSP very well. In this paper, a particle swarm optimization (PSO) algorithm and a tabu search (TS) algorithm are combined to solve the multi-objective FJSP with several conflicting and incommensurable objectives. PSO which integrates local search and global search scheme possesses high search efficiency. And, TS is a meta-heuristic which is designed for finding a near optimal solution of combinatorial optimization problems. Through reasonably hybridizing the two optimization algorithms, an effective hybrid approach for the multi-objective FJSP has been proposed. The computational results have proved that the proposed hybrid algorithm is an efficient and effective approach to solve the multi-objective FJSP, especially for the problems on a large scale.  相似文献   

15.
文章针对约束非线性优化问题,将微粒群优化算法(PSO)和序贯二次规划(SQP)算法结合起来,提出了一种解决此类问题的有效算法。PSO可以看作是全局搜索器,而SQP则主要执行局部搜索。对于那些具有多个局部极值点的优化问题,大大增加了获得全局极值点的几率。由于PSO具有快速全局收敛的特点,同时SQP的局部搜索能力很强,所以所提算法可以快速获得全局最优值。将基于PSO的序贯二次规划算法在两个标准优化问题上进行仿真,结果证明与标准的PSO和SQP相比,算法具有明显的优越性。  相似文献   

16.
Nature-inspired optimization algorithms, notably evolutionary algorithms (EAs), have been widely used to solve various scientific and engineering problems because of to their simplicity and flexibility. Here we report a novel optimization algorithm, group search optimizer (GSO), which is inspired by animal behavior, especially animal searching behavior. The framework is mainly based on the producer-scrounger model, which assumes that group members search either for ldquofindingrdquo (producer) or for ldquojoiningrdquo (scrounger) opportunities. Based on this framework, concepts from animal searching behavior, e.g., animal scanning mechanisms, are employed metaphorically to design optimum searching strategies for solving continuous optimization problems. When tested against benchmark functions, in low and high dimensions, the GSO algorithm has competitive performance to other EAs in terms of accuracy and convergence speed, especially on high-dimensional multimodal problems. The GSO algorithm is also applied to train artificial neural networks. The promising results on three real-world benchmark problems show the applicability of GSO for problem solving.  相似文献   

17.
周洋  许维胜  王宁  邵炜晖 《计算机科学》2015,42(Z11):16-18, 31
通过分析分布式电源对配电网的影响,以有功功率损耗、电压质量及分布式电源总容量为优化目标,基于模糊理论建立了分布式电源在配电网中选址定容的多目标优化模型,并提出了一种改进粒子群算法进行求解。在算例仿真中,基于IEEE 14标准节点系统,采用MATLAB仿真工具对所提算法进行了测试,证实了所提算法全局搜索能力较强、收敛速度较快,并通过比较分析验证了该模型和算法的可行性及有效性。  相似文献   

18.
具有混合群智能行为的萤火虫群优化算法研究   总被引:1,自引:1,他引:0  
吴斌  崔志勇  倪卫红 《计算机科学》2012,39(5):198-200,228
萤火虫群优化算法是一种新型的群智能优化算法,基本的萤火虫群优化算法存在收敛精度低等问题。为了提高算法的性能,借鉴蜂群和鸟群的群体智能行为,改进萤火虫群优化算法的移动策略。运用均匀设计调整改进算法的参数取值。若干经典测试问题的实验仿真结果表明,引入混合智能行为大幅提升了算法的优化性能。  相似文献   

19.
无人机(unmanned aerial vehicle,UAV)路径规划问题是无人机任务规划系统的重要组成部分,需要在一个存在威胁区的搜索空间中获得最优路径.为解决灰狼优化算法存在收敛速度慢、容易陷入局部最优等问题,提出了一种基于A*初始化的变异灰狼优化算法.该算法首先将模型离散化,进而使用A*算法进行头狼的初始化,使...  相似文献   

20.
This paper introduces a novel memetic algorithm namely Fractional Particle Swarm Optimization-based Memetic Algorithm (FPSOMA) to solve optimization problem using fractional calculus concept. The FC illustrates a potential for interpreting progression of the algorithm by controlling its convergence. The FPSOMA accomplishes global search over the whole search space through PSO whereas local search is performed by PSO with fractional order velocity to alter the memory of best location of the particles. To assess the performance of the proposed algorithm, firstly an empirical comparison study is presented for solving different test functions adopted from literature. Comparisons demonstrate the preference of FPSOMA than other related algorithms. Subsequently, experiments are conducted to achieve optimal gains of Fractional Order Proportional-Integral-Derivative (FO PID) controller in solving tracking problem. Results verify the efficiency of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号