首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RE3+-activated monoclinic Na3GdP2O8 (RE3+ = Tb3+, Dy3+, Eu3+, Sm3+) phosphors have been synthesized by a solid-state reaction method. Their photoluminescence properties in the vacuum ultraviolet (VUV) region were investigated. By analyzing their excitation spectra, the host-related absorption band was determined to be around 166 nm. The f-d transition bands and the charge transfer bands for Na3GdP2O8:RE3+ (RE3+ = Tb3+, Dy3+, Eu3+, Sm3+) were assigned and corroborated. For the sample Na3GdP2O8:5%Tb3+, the strong bands at around 202 and 221 nm are assigned to the 4f-5d spin-allowed transitions and the weak band at 266 nm is related to the spin-forbidden transition of Tb3+. For Na3GdP2O8:5%Dy3+, the broad band at 176 nm could be related to the f-d transitions of Dy3+ and the O2− → Dy3+ charge transfer band (CTB) besides the host-related absorption. In the excitation spectrum of Eu3+ doped sample, the O2− → Eu3+ CTB is observed to be at 245 nm. For the Sm3+ doped sample, the O2− → Sm3+ CTB is not distinguished obviously and is overlapped with the host-related absorption band.  相似文献   

2.
NaSm9(SiO4)6O2 powders were synthesized by mild hydrothermal method at 180 °C for 24 h. The infrared optical properties and structure of the obtained powders were characterized. There existed two narrow and sharp absorptive bands near 943 cm− 1 (10.6 μm). The band at 938 cm− 1 was assigned to the stretching vibrations of SiOSm groups connecting to Q1 species and the band at 989 cm− 1 was attributed to the stretching vibrations of SiOSm groups linking with Q0 species. The reflectivity was lower than 1% from 900 to 1200 nm and reached the minimum of 0.46% at 1073 nm. The prepared powders exhibit potential to act as a new kind of absorptive material for the infrared light of 10.6 μm and 1.06 μm.  相似文献   

3.
The present investigation aims to demonstrate the potentiality of Tb3+ and Ce3+ co-doped Ca4Y6(SiO4)6O phosphors. By incorporation of Ce3+ into Ca4Y6(SiO4)6O: Tb3+, the excitation band was extended from short-ultraviolet to near-ultraviolet region. The energy transfer from Ce3+ to Tb3+ in Ca4Y6(SiO4)6O host was investigated and demonstrated to be a resonant type via a dipole–dipole mechanism with the critical distance of 10.2 Å. When excited by 352 nm, Ca4Y6(SiO4)6O: Ce3+, Tb3+ exhibited a brighter and broader violet-blue emission (421 nm) from the Ce3+ and an intense green emission (542 nm) from the Tb3+. Combining the two emissions whose intensities were adjusted by changing the doping levels of the co-activator, an optimized white light with chromaticity coordinates of (0.278, 0.353) is generated in Ca4Y6(SiO4)6O: 2% Ce3+, 8% Tb3+, and this phosphor could be potentially used in near-ultraviolet light-emitting diodes.  相似文献   

4.
A cadmium analogue of the mercury system with nominal composition CdBa2(Ca1–xYx)Cu2Oy has been synthesized. Thex=0 samples contain about 12 vol.% of the 1212 phase but are not superconducting. Thex=0.3 samples are superconducting atT on = 103 K. The EDX analysis of 18 microcrystals shows a broad cationic distribution of the different components. The observed broad superconducting transition is attributed to the variousT c of the different microcrystals.  相似文献   

5.
Phosphors for radiation detection require efficient energy transfer from the ionization track to the luminescent centers. In this work, the radioluminescence (RL) spectra of SrAl2O4 phosphor ceramics doped with individual trivalent rare earth element (REE) ions (Sm, Eu and Dy) are reported at the room temperature. Although there is some intrinsic UV/blue emission from the host lattice, the dominant signals are from the rare-earth sites, with signals characteristic of the REE2+ and REE3+ states. The shapes of the emission bands are different for each dopant. The sharp emission properties show that the SrAl2O4 is a suitable host for rare-earth ion doped phosphor material.  相似文献   

6.
Ce3+ doped La4Ca(SiO4)3O phosphors with silicate oxyapatite structure were synthesized by the sol-gel process. The X-ray diffraction (XRD) patterns showed that a pure phase was formed when sintering temperature was higher than 1300°C. The optical properties of La4Ca(SiO4)3O:Ce3+ phosphors with varying sintering temperature and concentration were investigated by examining their excitation and emission spectroscopy. The phosphors exhibited a broad emission band centered at 550nm which could be attributed to the 5d-4f transition of Ce3+ and a stronger excitation peak around 467nm as well as several shoulder bands, nicely matching with the widely applied blue LED chips. Higher emission intensity was observed when firing temperature above 1300°C, due to increasing crystallinity of the powders. When Ce3+ concentration was equal to 5 at%, the sample exhibited the optimum excitation and emission efficiency. The results indicate that La4Ca(SiO4)3O:Ce3+ is a promising candidate in the application of blue chip excited white light emitting diodes (LEDs).  相似文献   

7.
New Ce3+ and/or Mn2+ activated Ca10K(PO4)7 phosphors were prepared by solid-state reaction, and their photoluminescence properties upon ultraviolet and vacuum ultraviolet excitation were investigated. Under 254 nm excitation, a series of Ca10K(PO4)7:xMn2+ samples exhibit two emission bands at 463 and 650 nm, which could be attributed to oxygen defects and 4T16A1 transition of Mn2+, respectively. And an energy transfer from defects to Mn2+ has been observed. With the Mn2+ content increased, the emitting hues of Ca10K(PO4)7:Mn2+ can range from blue to red. By co-doping Ce3+ to Ca10K(PO4)7:Mn2+, the emission intensity of Mn2+ is strongly enhanced due to an efficient energy transfer by [Ce3+ → Mn2+] and [defects → Ce3+ → Mn2+]. But under 147 nm excitation, the emission intensity of Mn2+ in Ca10K(PO4)7:0.25Mn2+ decreases slightly compared with that in Ca10K(PO4)7:025Mn2+, 0.1Ce3+, 0.1K+ due to the host sensitization competition between Ce3+ and Mn2+.  相似文献   

8.
The RE (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy) and Mn ions co-doped Co-Zn ferrites were prepared by solid-state reaction method. X-ray diffraction, infrared spectra, X-ray photoelectron spectroscopy, Mössbauer spectroscopy and infrared emission measurement (IRE-2) were employed to investigate the effect of the substitution RE3+ and Mn ions for Fe3+ ones on the spinel structure, the chemical homogeneity, and the infrared emission properties of the Co-Zn ferrites. The substitution leads to non-monotonous change of the lattice parameters and infrared emissivity properties, which is mainly attributed to the partial cation exchange among the spinel structure of Co-Zn ferrites. The infrared emission properties of Co-Zn ferrites seem to be greatly influenced by the co-doped of RE3+ and Mn ions—maxima values were 0.96-0.97, found for LaF, NdF and GdF, respectively.  相似文献   

9.
Eu3+- and Tb3+-activated SrGdGa3O7 phosphors were synthesized by the solid-state reaction and their luminescence properties were investigated. Sr(Gd1 − xEux)Ga3O7 and Sr(Gd1 − xTbx)Ga3O7 formed continuous solid solution in the range of x = 0-1.0. Unactivated SrGdGa3O7 exhibited a typical characteristic excitation and emission of Gd ion. The SrGdGa3O7:xEu3+ and SrGdGa3O7:xTb3+ phosphors also showed the well-known Eu3+ and Tb3+ excitation and emission. The energy transfer from Gd3+ to Eu3+ and Tb3+ were verified by photoluminescence spectra. The dependence of photoluminescence intensity on Eu3+ and Tb3+ concentration were also studied in detail and the photoluminescence (PL) intensity of SrGdGa3O7:Eu and SrGdGa3O7:Tb were compared with commercial phosphors, Y2O3:Eu and LaPO4:Ce,Tb. The luminescence decay measurements showed that the lifetimes of Eu3+ and Tb3+ were in the range of microsecond. The energy transfer from Gd3+ to Tb3+ was also observed in decay curve.  相似文献   

10.
11.
A series of halosilicate phosphor, Ba5SiO4(F,Cl)6:Eu2+, were synthesized by a solid state reaction. Excited by 370-nm light, Ba5SiO4Cl6:Eu2+ exhibits a broad emission band peaking at 440 nm. Partial substitution of Cl with F in the host lattice leads to red-shift in the emission band with centering wavelength from 440 nm to 503 nm. The possible mechanism for the luminescence change was discussed based on the XRD patterns. Blue and green LEDs were fabricated by combination of a 370 nm-emitting near UV chip and the optimal Ba5SiO4Cl6:Eu2+ and Ba5SiO4(F3Cl3):Eu2+, respectively. This series of phosphors is considered as a promising blue and green component used in fabrication of near UV-based white LEDs.  相似文献   

12.
Triply-doped single crystals KGd(WO4)2:Er3+/Yb3+/Tm3+, KGd(WO4)2:Tb3+/Yb3+/Tm3+ and KGd(WO4)2:Pr3+/Yb3+/Tm3+ were grown by the Top Seeded Solution Growth (TSSG) method, with an aim of getting efficient up-converted multicolored luminescence, which subsequently can be used for generation of white light. Such an aim determined the choice of the triply doped compounds: excitation of the Yb3+ ions in the infrared spectral region is followed by red, green and blue emission from other dopants. It was shown that all these systems exhibit multicolor up-conversion fluorescence under 980 nm laser irradiation. Detailed spectroscopic studies of their absorption and luminescence spectra were performed. From the analysis of the dependence of the intensity of fluorescence on the excitation power the conclusion was made about significant role played by the host’s conduction band and other possible defects of the KGd(WO4)2 crystal lattice in the up-conversion processes.  相似文献   

13.
The structural phase transitions and relaxation processes of Cs2Co(SO4)2·6H2O and Cs2Zn(SO4)2·6H2O single crystals were investigated, with the phase transitions of both crystals being determined from NMR data. The spin–lattice relaxation time, T1, of the 133Cs nucleus in two crystals undergoes a significant change near the phase transition temperature, TC, and these changes coincide with the changes in the splitting of the 133Cs resonance lines. The variations in the temperature dependence for the splitting of the 133Cs resonance lines and T1 near TC are related to changes in the symmetry of surrounding Cs+. In addition, the 133Cs T1 of Cs2Co(SO4)2·6H2O, which contains paramagnetic ions, was found to be shorter than that of Cs2Zn(SO4)2·6H2O. This relaxation time is inversely proportional to the square of the magnetic moment of the paramagnetic ions. The differences between the 133Cs T1 of these compounds are probably due to the differences between the electronic structures of their metal ions.  相似文献   

14.
Trivalent thulium-doped K5Bi(MoO4)4 single crystals were grown by the Czochralski method. Its polarized absorption and fluorescence spectra and fluorescence decay curves were recorded at room temperature. On the basis of the Judd-Ofelt theory, the spectral parameters of the Tm3+:K5Bi(MoO4)4 crystal were calculated. The cross relaxations between Tm3+ ions were analyzed. The emission cross sections of the 3F4 → 3H6 transition were obtained by the Fuchtbauer-Ladenburg formula and then the gain cross sections around 1.9 μm were calculated. The peak emission cross section and width of emission band around 1.9 μm are comparable to those for Tm3+:YAG and the tunable range is about 280 nm for the potential ∼1.9 μm laser operation via the 3F4 → 3H6 transition.  相似文献   

15.
The Cu4SO4(OH)6 was synthesized by a simple hydrothermal reaction with a yield of ~ 90%. Using Cu4SO4(OH)6 as the starting material, novel fishbone-like Cu(OH)2 was produced by a direct reaction of Cu4SO4(OH)6 with NaOH solution. The Cu(OH)2 consists of many needle-like nanorods parallel to each other and perpendicular to the direction of backbone, forming fishbone-like structure. Using the fishbone-like Cu(OH)2 as the sacrificial precursor, CuO with similar size and morphology was obtained through a simple heat treatment. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, X-ray photoelectron spectroscopy, BET nitrogen adsorption, and UV-Vis absorption spectroscopy were employed to characterize the as-prepared samples. The conversion of the Cu4SO4(OH)6 to the fishbone-like Cu(OH)2 was visualized by time-dependent SEM images. A mechanism was also proposed based on the observed results.  相似文献   

16.
Luminescence of Eu2+ in Sr2SiO4:Eu2+, RE3+ [RE = Ce, Nd, Sm and Dy] phosphors was studied with a view to obtain an afterglow phosphor. The synthesized phosphors were characterized by powder X-ray diffraction (XRD), diffuse reflectance, photo- and thermoluminescence spectroscopic techniques. Afterglow was observed only with Dy3+ co-doped phosphor. The observed afterglow with Dy3+ co-doping originated from the formation of suitable traps which was supported by thermoluminescence results.  相似文献   

17.
L.H. Jiang  C.Y. Li  J.Q. Hao 《Materials Letters》2007,61(29):5107-5109
Borates LiSr4(BO3)3 were synthesized by high-temperature solid-state reaction. The thermoluminescence (TL) and some of the dosimetric characteristics of Ce3+-activated LiSr4(BO3)3 were reported. The TL glow curve is composed of only one peak located at about 209 °C between room temperature and 500 °C. The optimum Ce3+ concentration is 1 mol% to obtain the highest TL intensity. The TL kinetic parameters of LiSr4(BO3)3:0.01Ce3+ were studied by the peak shape method. The TL dose response is linear in the protection dose ranging from 1 mGy to 1 Gy. The three-dimensional thermoluminescence emission spectra were also studied, peaking at 441 and 474 nm due to the characteristic transition of Ce3+.  相似文献   

18.
A white-emitting Ca9Y(PO4)7: Tm3+, Dy3+ phosphor has been successfully prepared by conventional high-temperature solid-state reaction. X-ray diffraction (XRD) and fluorescence spectrophotometer were used to characterize the as-synthesized phosphors. The excitation and emission spectra show that all the Tm3+ and Dy3+ co-doped Ca9Y(PO4)7 samples can be effectively excited by UV light and then emit blue and yellow light simultaneously. Furthermore, the emission and color coordinate of as-obtained samples pumped by 365 nm are able to be adjusted around white light by varying the doping concentrations of Tm3+ and Dy3+. So, the as-fabricated single-composition Ca9Y(PO4)7: Tm3+, Dy3+ phosphor will have a promising application in the area of white light emitting diodes.  相似文献   

19.
This paper reports on the luminescence and microstructural features of oxide nano-crystalline (Y2O3:Eu3+) and submicron-sized (Y2SiO5:Ce3+,Tb3+) phosphor cores, produced by two different synthesis techniques, and subsequently coated by an inert shell of SiO2 using a sol-gel process. The shells mitigate the detrimental effect of the phosphor particle surfaces on the photoluminescence emission properties, thereby increasing luminous output by 20-90%, depending on the core composition and shell thickness. For Y2O3:Eu3+, uniformly shaped, narrow particle size distribution core/shell particles were successfully fabricated. The photoluminescence emission intensity of core nanoparticles increased with increasing Eu3+ activator concentration and the luminescence emission intensity of the core/shell particles was 20-50% higher than that of the core particles alone. For Y2SiO5:Ce3+,Tb3+, the core/shell particles showed enhancement of the luminescence emission intensity of 35-90% that of the core particles, depending on the SiO2 shell thickness.  相似文献   

20.
Vacuum ultraviolet excitation spectra of phosphors (La,Gd)PO4:RE3+ (RE=Eu or Tb) and X-ray photoelectron spectra of LaPO4 and GdPO4 are investigated. The vacuum ultraviolet excitation intensity of (La,Gd)PO4:RE3+ is enhanced with the increasing of Gd3+ content, which implies that Gd3+ plays an intermediate role in energy transfer from host absorption band to RE3+. When Gd3+ is doped into LaPO4:Eu3+, charge transfer band (CT band) begins to shift to higher energy region and the overlap degree of CT band and the host absorption band gets greater with more Gd3+ doped into LaPO4. These results suggest that the dopant (Gd3+) gives an important influence on energy transfer efficiency. The top of LaPO4 valance band is formed by the 2p level of O2−, whereas that of GdPO4 valance band is formed by the 2p level of O2− and the 4f level of Gd3+, showing the differences in band structures between LaPO4 and GdPO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号