首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study designs, fabricates, and characterizes a novel micro electromagnetic actuator comprising a PDMS diaphragm, a polyimide-coated copper micro coil, and a permanent magnet. When an electrical current is passed through the micro coil, a magnetic force is induced between the coil and the magnet which causes the diaphragm to deflect, thereby creating an actuation effect. The experimental results demonstrate that the diaphragm deflection can be accurately controlled by regulating the current passed through the micro coil. It is shown that the maximum diaphragm deflection within elastic limits is 150 μm; obtained by passing a current of 0.6 A through a micro coil with a line width of 100 μm. The micro actuator proposed in this study is easily fabricated and is readily integrated with existing bio-medical chips due to its planar structure.  相似文献   

2.
This paper reports the experimental results on kinematics and deformation of ferrofluid droplets driven by planar coils. Ferrofluid droplets act as liquid magnets, which can be controlled and manipulated by an external magnetic field. In our experiments, the magnetic field was generated by two pairs of planar coils, which were fabricated on a double-sided printed circuit board. The first pair of coils constrains the ferrofluid droplet to a one-dimensional motion. The second pair generates the magnetic gradient needed for the droplet motion. The direction of the motion can be controlled by changing the sign of the gradient or of the driving current. Kinematic characteristics of the droplet such as the velocity–position diagram and the aspect ratio of the droplet are investigated. The analysis and discussion are based on the different parameters such as the droplet size, the viscosity of the surrounding medium, and the driving current. This simple actuation concept would allow the implementation of lab-on-a-chip platforms based on ferrofluid droplets.  相似文献   

3.
Surface microfluidic systems have emerged as an attractive alternative to conventional closed-channel microfluidic devices. In many such systems, electric fields are leveraged for the manipulation and transport of discrete nanoliter droplets on open planar surfaces. The present research work discusses dielectrophoretic liquid and droplet actuations, which provide an attractive methodology for dispensing and manipulating nanoliter and picoliter droplets on planar surfaces. We demonstrate the integration of two independent sample actuation schemes, namely liquid dielectrophoresis (L-DEP) and droplet dielectrophoresis, and furthermore validate its applicability through model biochemical assays (DNA-PicoGreen® assay and DNA FRET assay). We also describe and present ‘tapering L-DEP’ actuation scheme, whereby we demonstrate how to simultaneously create multiple droplets of different sizes and volumes in the range of nanoliter and picoliters, from a given larger parent sample droplet.  相似文献   

4.
A ferrofluidic magnetic micropump   总被引:6,自引:0,他引:6  
A microfluidic pump is described that uses magnetic actuation to push fluid through a microchannel. Operation relies on the use of magnetically-actuated plugs of ferrofluid, a suspension of nanosize ferromagnetic particles. The ferrofluid contacts but is immiscible with the pumped fluid. The prototype circular design demonstrates continuous pumping by regenerating a translating ferrofluidic plug at the conclusion of each pumping cycle. The flow rate can be controlled by adjusting device dimensions or the velocity of an external permanent magnet that directs the motion of the ferrofluid. The ferrofluidic plugs also serve as valves; if the magnetic actuator is stopped, pressure can be maintained with no power consumption. Flow can also be reversed by switching the direction of actuation. The maximum flow rate achieved with minimal backpressure was 45.8 μl/min. The maximum pressure head achieved was 135 mm water (1.2 kPa)  相似文献   

5.
MEMS switches based on a dual-mode actuation scheme that simultaneously allows for large standoff heights and low clamping voltages have been designed and fabricated. These devices are based on the use of a transient external magnetic field to bring the actuating portion of the switch close to a dielectric-coated clamping electrode, followed by application of an electrostatic clamping voltage to keep the switch closed. Since the clamping voltage is applied when the switch is closed, this voltage can be relatively small. This approach is particularly attractive for RF applications such as arrays of switches in reconfigurable aperture antennas. The arrays of switches are simultaneously closed by the magnetic field generated by an external magnetic source, then selected switches are clamped by electrostatic force using low voltages to maintain the ON state. Their utility in such an array has been demonstrated and several different design variations have been explored to improve switch performance. Contact resistance as low as 0.37 Ω has been achieved, with actuating field strength of 40 Gauss. These switches possess a large open state air gap (25 μm), and are able to pass high currents in excess of 1 A under low frequency or DC operation. The large OFF state impedance allows for their usage in switching applications in RF devices. Their high frequency functionality has been tested to find that their open-state impedance was identical to that of a perfect open up to 9 GHz and their RF reconfigurability has been demonstrated in a monopole/dipole test bed.  相似文献   

6.
Magnetic nanoparticle suspensions and their manipulation are becoming an alternative research line. They have vital applications in the field of microfluidics such as microscale flow control in microfluidic circuits, actuation of fluids in microscale, and drug delivery mechanisms. In microscale, it is possible and beneficial to use magnetic fields as actuators of such ferrofluids, where these fluids could move along a dynamic gradient of magnetic field so that a micropump could be generated with this technique. Thus, magnetically actuated ferrofluids could have the potential to be used as an alternative micro pumping system. Magnetic actuation of nanofluids is becoming an emergent field that will open up new possibilities in various fields of engineering. Different families of devices actuating ferrofluids were designed and developed in this study to reveal this potential. A family of these devices actuates discrete plugs, whereas a second family of devices generates continuous flows in tubes of inner diameters ranging from 254?μm to 1.56?mm. The devices were first tested with minitubes to prove the effectiveness of the proposed actuation method. The setups were then adjusted to conduct experiments on microtubes. Promising results were obtained from the experiments. Flow rates up to 120 and 0.135?μl/s were achieved in minitubes and microtubes with modest maximum magnetic field magnitudes of 300?mT for discontinuous and continuous actuation, respectively. The proposed magnetic actuation method was proven to work as intended and is expected to be a strong alternative to the existing micropumping methods such as electromechanical, electrokinetic, and piezoelectric actuation. The results suggest that ferrofluids with magnetic nanoparticles merit more research efforts in micro pumping.  相似文献   

7.
One of the most important and promising research areas in biomedical and micropumping applications is magnetic actuation of ferrofluids with dynamic magnetic fields. For ensuring the use of ferrofluids in various applications in engineering fields, their flows generated by magnetic fields should be extensively investigated and simulated. In this study, simulations of ferrofluid actuation with dynamic magnetic fields were performed by modeling it using the COMSOL Multiphysics software, and iron oxide nanoparticle-based ferrofluids at different angles of rotating magnets were considered to provide insight into ferrofluid flow in small channels. Ferrofluid flows were modeled at different magnetic flux densities provided by rotating magnets, and velocity profiles inside the channel were analyzed. It was shown that ferrofluid actuation can be considered as a futuristic micropumping alternative, simulation results matched well with the experimental results of previous work, and the established model could serve as a tool to analyze ferrofluid flows generated by dynamic magnetic fields. The results of the model show that flow rates up to 100 µl/s can be reached at a rotation angle of 30° by using dynamic magnetic fields. Various applications including biomedical applications might be envisaged.  相似文献   

8.
In this paper, we present the design, fabrication, and measurement results of a two-dimensional electromagnetic scanning micromirror actuated by radial magnetic field. The scanner is realized by combining a gimbaled single-crystal-silicon micromirror with a single turn electroplated metal coil, with a concentric permanent magnet assembly composed of two concentric permanent magnets and an iron yoke. The proposed scanner utilizes the radial magnetic field rather than using a lateral magnetic field oriented 45deg to the horizontal and vertical scan axes to achieve a biaxial magnetic actuation. The single turn coil fabricated with electroplated copper achieves a nominal resistance of 1.2 Omega. A two-dimensional scanner with mirror size of 1.5 mm in diameter was fabricated. Maximum optical scan angle of 8.8deg in horizontal direction and 8.3deg in vertical direction were achieved. Forced actuation of the gimbal at 60 Hz and resonant actuation of the micromirror at 19.1-19.7 kHz provide slow vertical scan and fast horizontal scan, respectively. The proposed scanner can be used in raster scanning laser display systems and other scanner applications.  相似文献   

9.
Dip pen nanolithography (DPN) is a method of creating nanoscale chemical patterns on surfaces using an atomic force microscope (AFM) probe. Until now, efforts to increase the process throughput have focused on passive multi-probe arrays and active arrays based on thermal bimetallic actuation. This paper describes the first use of electrostatic actuation to create an active DPN probe array. Electrostatic actuation offers the benefit of actuation without the probe heating required for thermal bimetallic actuation. Actuator cross talk between neighboring probes is also reduced, permitting more densely spaced probe arrays. The array presented here consists of 10 cantilever probes, where each is 120 μm long and 20 μm wide. Each cantilever probe is actuated by the electrostatic force between the probe and a built-in counter electrode with a 20–25 μm gap. The tip-to-tip probe spacing, also called the array pitch, is 30 μm. Patterns of 1-octadecanethiol were created on gold surfaces to demonstrate single-probe actuation, simultaneous multi-probe actuation, and overlap of patterns from adjacent probes. The minimum line width was 25 nm with an average line width of 30–40 nm.  相似文献   

10.
Concentrating particles to a detectable level is often necessary in many applications. Although magnetic force has long been used to enrich magnetic (or magnetically tagged) particles in suspensions, magnetic concentration of diamagnetic particles is relatively new and little reported. We demonstrate in this work a simple magnetic technique to concentrate polystyrene particles and live yeast cells in ferrofluid flow through a straight rectangular microchannel using negative magnetophoresis. The magnetic field gradient is created by two attracting permanent magnets that are placed on the top and bottom of the planar microfluidic device and held in position by their natural attractive force. The magnet–magnet distance is mainly controlled by the thickness of the device substrate and can be made small, allowing for the use of a dilute ferrofluid in the developed magnetic concentration technique. This advantage not only enables a magnetic/fluorescent label-free handling of diamagnetic particles, but also renders such handling biocompatible.  相似文献   

11.
Focusing particles into a tight stream is critical to many applications such as microfluidic flow cytometry and particle sorting. Current magnetic field-induced particle focusing techniques rely on the use of a pair of repulsive magnets, which makes the device integration and operation difficult. We develop herein a new approach to focusing nonmagnetic particles in ferrofluid flow through a T-microchannel using a single permanent magnet. Particles are deflected across the suspending ferrofluid by negative magnetophoresis and confined by a water flow to the center plane of the microchannel, leading to a focused particle stream flowing near the bottom channel wall. Such three-dimensional diamagnetic particle focusing is demonstrated in a sufficiently diluted ferrofluid through both the top and side views of the microchannel. As the suspended particles can be visualized in bright field, this magnetic focusing method is expected to find applications to label-free (i.e., no magnetic or fluorescent labeling) cellular focusing in lab-on-a-chip devices.  相似文献   

12.
Tunable blazed gratings   总被引:2,自引:0,他引:2  
In this paper, we report on the design, fabrication, and characterization of blazed gratings made tunable by electrostatic actuation. We combine KOH etching and deep-reactive ion etching (DRIE) to fabricate tunable blazed gratings (TBGs) on silicon-on-insulator wafers with optical-quality mirror surfaces on {111} crystalline planes. The actuators that are used to position the individual grating elements are designed to reduce rotation to levels acceptable for spectroscopic applications. We characterize the fabricated devices mechanically, verify the rotation-reduction design, and demonstrate the functionality of TBGs as tunable filters.  相似文献   

13.
This study proposes a method named as ferrofluid-molding method for polymer microlens array fabrication. In this method, the master of the mother mold for microlens molding is an array of ferrofluid droplets. We generated droplet arrays by inducing the droplet’s magnetic hydrodynamic instability under different magnetic fields, and used the field-dependent droplet dimensions to fabricate numerous mold cavities. By this we could fabricate arrays of microlens with different bottom area, height, radius of curvature, and focal length. From our analysis, all the fabricated microlens arrays possessed good uniformity, and the largest numerical aperture of our microlens array was found as 0.54. In addition, we also designed a light uniformity experiment to demonstrate a potential application of our microlens arrays.  相似文献   

14.
A novel magnetically actuated 8/spl times/8-port MEMS-based fiber-optic switch is described. Fiber-to-fiber insertion loss measurements of six 8/spl times/8 switch units show average and worst-case insertion loss of 1.3 dB and 2 dB, respectively. Low insertion loss is achieved through a unique MEMS design that uses anisotropically etched single-crystal silicon sidewalls to provide a global mechanical alignment stop for an array of MEMS mirrors. This alignment surface produces a uniform and repeatable mirror angle across the mirror array. Mirror misalignment is attributed to the surface roughness of the silicon sidewalls. Repeated interferometric measurements of the mirrors of 24 8/spl times/8 switch units show repeatability of the mirror angle of 3/spl times/10/sup -3/ degrees, while the uniformity of the mirror angle across the MEMS array is 2/spl times/10/sup -2/ degrees, in agreement with the angular error predicted from measurements of sidewall surface roughness. In turn, the average repeatability and uniformity of the insertion loss are 0.01 dB and 1 dB, respectively, in agreement with predictions based on the interferometric measurements. Finally, the unique dynamics of the magnetic actuation and electrostatic addressing scheme are described. Measurements show that fast switching can be achieved by driving the mirrors with a magnetic pulse that is faster than the mechanical resonant frequency of the mirror, relying on an electrostatic clamping force to capture the mirror as it overshoots the magnetic field angle. This actuation scheme is shown to result in switching times of 8.5 ms to 13.5 ms, but requires accurate control of the kinetic energy of the mirror.  相似文献   

15.
We present an optofluidic system based on electromagnetic manipulation of a ferrofluid to tune a liquid lens. Both studies of the dynamics of fluid transport and of the optical properties of the liquid lens have been carried out. Thermal and magnetic field simulations of the microcoil actuators are presented. Proof-of-principle experiments demonstrating the adaption of the focal length of the lens have been carried out. It is shown that the lens adaption proceeds in a reversible and reproducible manner, given that the ferrofluid plug moves with a speed below a specific threshold value. Furthermore, the time delay between the actuation and the deflection of the lens surface is studied.  相似文献   

16.
A study on thermocapillary actuation of liquid droplet in a planar microchannel has been carried out by both theoretical modeling and experimental characterization. The driving temperature gradients are provided by four heaters at the channel boundaries. In the modeling, the temperature distributions corresponding to transient actuation are calculated, and are coupled to the droplet through the surface tensions which drive the droplet to move inside the channel. The droplet trajectories and final positions are predicted, and are compared with the experimental observations, in which a silicon oil droplet was actuated inside a 10 mm  ×  10 mm planar channel with four heater fabricated on the substrate plate. The results show that the droplet can be positioned anywhere in the channel, determined by a heating code related to the heating strengths. Qualitative agreement between the modeling results and experimental data, in terms of temperature distributions, droplet trajectories and positions, has been obtained.  相似文献   

17.
Various applications of micro-robotic technology suggest the use of new actuator systems which allow motions to be realized with micrometer accuracy. Conventional actuation techniques such as hydraulic or pneumatic systems are no longer capable of fulfilling the demands of hi-tech micro-scale areas such as miniaturized biomedical devices and MEMS production equipment. These applications pose significantly different problems from actuation on a large scale. In particular, large scale manipulation systems typically deal with sizable friction, whereas micro manipulation systems must minimize friction to achieve submicron precision and avoid generation of static electric fields. Recently, the magnetic levitation technique has been shown to be a feasible actuation method for micro-scale applications. In this paper, a magnetic levitation device is recalled from the authors’ previous work and a control approach is presented to achieve precise motion control of a magnetically levitated object with sub-micron positioning accuracy. The stability of the controller is discussed through the Lyapunov method. Experiments are conducted and showed that the proposed control technique is capable of performing a positioning operation with rms accuracy of 16 μm over a travel range of 30 mm. The nonlinear control strategy proposed in this paper showed a significant improvement in comparison with the conventional control strategies for large gap magnetic levitation systems.  相似文献   

18.
The integration of a PDMS membrane within orthogonally placed PMMA microfluidic channels enables the pneumatic actuation of valves within bonded PMMA–PDMS–PMMA multilayer devices. Here, surface functionalization of PMMA substrates via acid catalyzed hydrolysis and air plasma corona treatment were investigated as possible techniques to permanently bond PMMA microfluidic channels to PDMS surfaces. FTIR and water contact angle analysis of functionalized PMMA substrates showed that air plasma corona treatment was most effective in inducing PMMA hydrophilicity. Subsequent fluidic tests showed that air plasma modified and bonded PMMA multilayer devices could withstand fluid leakage at an operational flow rate of 9 μl/min. The pneumatic actuation of the embedded PDMS membrane was observed through optical microscopy and an electrical resistance based technique. PDMS membrane actuation occurred at pneumatic pressures of as low as 10 kPa and complete valving occurred at 14 kPa for ~100 μm by 100 μm channel cross-sections.  相似文献   

19.
The performance of optical microcavities is limited by spectral degradation resulting from thermal deformation and fabrication imperfections. In this paper, we study the spatial-mode properties of micromirror optical cavities with respect to commonly seen aberrations. Electrothermal actuation is used to slightly adjust the shape and position of micromirrors and study the effects this has on the spatial-mode structure of the cavity spectrum. The shapes of the micromirrors are changed using Joule heating with thermal expansion deformation. Significant differences in mirror tilt, curvature, and astigmatism are measured, but the tilt has by far the biggest impact on cavity finesse and resolution. We demonstrate that unwanted higher order spatial modes can be suppressed electrically and an amplitude reduction for the higher order modes of over 60% has been obtained with a tuning current of 5.5 mA. A fundamental mode finesse of approximately 60 is maintained throughout tuning. These tunable cavities have great potential in applications using cavity arrays or requiring dynamic mode control.  相似文献   

20.
Plastic micropump with ferrofluidic actuation   总被引:3,自引:0,他引:3  
We present the realization and characterization of a new type of plastic micropump based on the magnetic actuation of a magnetic liquid. The pump consists of two serial check-valves that convert the periodic motion of a ferrofluidic plug into a pulsed quasi-continuous flow. The ferrofluid is actuated by the mechanical motion of an external NdFeB permanent magnet. The water-based ferrofluid is synthesized in-house using a coprecipitation method and has a saturation magnetization of 32 mT. The micropump consists of various layers of polymethylmethacrylate (PMMA), which are microstructured by powder blasting or by standard mechanical micromachining techniques, and are assembled in a single plastic structure using a monomer gluing solution. Two soft silicone membranes are integrated in the microfluidic structure to form two check-valves. Water has been successfully pumped at flow rates of up to 30 /spl mu/L/min and pumping is achieved at backpressures of up to 25 mbar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号