首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
对激光成形修复Inconel 625合金的工艺特性以及不同区域的组织进行了研究。结果表明:激光成形修复Inconed625合金的工艺范围较宽;激光功率主要影响单道修复层的宽度;扫描速度对单道修复层的尺寸影响较为显著,而送粉率的影响较小。基材的相组成包括γ(Ni-Cr)基体相、大尺寸(约10μm)块状MC型碳化物(M为Nb和Ti)、沿晶界析出的小尺寸(约0.5μm)块状MC型碳化物以及不规则形状的Laves相。修复区组织为呈外延生长的柱状枝晶,相组成为γ基体相、沿枝晶界析出的Laves相以及少量MC型碳化物。层与层界面处Laves相析出急剧增加形成层间过渡区。  相似文献   

2.
通过不同扫描速度和扫描方式的选区激光熔化(SLM)技术制备了Inconel 718合金,研究了工艺参数对熔池的形态、凝固组织、晶粒大小和晶粒取向的影响。结果表明,随着扫描速度增加,熔池的深度与宽度的比值增大,曲率增大;而扫描速度为1 450mm/s时,采用单向扫描比十字交叉扫描时深宽比值更大。在熔池内,凝固组织由熔池底部的胞晶向熔池侧面的胞枝晶转变。晶粒以<001>方向择优生长,其晶粒间的取向差角以小角度(<15°)为主。当十字交叉扫描时,随着扫描速度增加,小角度取向差角的分布分数增加。当速度一定、采用十字交叉扫描时,小角度的取向差角占比为62.57%,而采用单向扫描时为47.69%。  相似文献   

3.
The very high temperature reactor (VHTR) has been selected as among the Generation IV nuclear power system. The coolant, namely helium, has been shown to contain low level of oxidizing as well as carbon‐bearing impurities (such as H2, CO (and CO2), CH4, N2 ranging from a few microbars to hundreds of microbars and water vapour in the microbar range) that can interact with metals at high temperature. In this specific gas phase, there is a competition between the formation of protective oxide scales and deleterious reactions towards carbon. A possible oxide layer reduction could be observed in a particular case detailed in this paper. This destruction of the oxide can imply consequences on the behaviour of the alloy as strong carburization or deep internal oxidation could occur. The influence of the level of impurities was analysed through a parametric approach. The experiments were carried out in a purpose‐designed device that allows the control of low impurity partial pressures.  相似文献   

4.
使用Nd-YAG激光器对AZ31镁合金板材表面进行了激光重熔处理,分析了激光重熔处理对其表面特性的影响.在激光扫描时,试样表面发生了快速熔凝,处理层可分为重熔区、热影响区两部分.重熔区的晶粒得到明显细化,硬度比基体提高5%.腐蚀试验表明,AZ31镁合金在激光重熔处理后,在3.5%的NaCl溶液中的耐蚀性得到明显改善.重熔区晶粒细化和Al元素富集是激光重熔表面处理提高其耐蚀性的主要因素.  相似文献   

5.
利用光镜(OM)、硬度测试、室温拉伸试验等方法,研究了Inconel 617合金管的微观组织和力学性能在不同热处理工艺参数下的变化趋势。通过光镜对合金组织进行表征,分析了温度为1120~1200 ℃,保温时间为10、30 min时合金晶粒尺寸的变化规律,同时建立了晶粒尺寸长大的动力学模型。结果表明,随着温度的不断提高,晶粒的平均尺寸不断增大,并且晶粒内部逐渐出现较多的孪晶。同时,随着热处理温度的不断提高,合金的硬度变化趋势与抗拉强度变化趋势相同,二者都随着温度的升高,呈现下降的趋势;合金的伸长率随着温度的升高不断增加。Inconel 617合金的晶界迁移表观激活能Q为651.82 kJ/mol。  相似文献   

6.
Brass coating was applied to AISI410 steel using high power laser in a laser engineered net shaping (LENS™) system. The influence of laser treatment on interfacial microstructure and thermal performance was evaluated as a function of coating thickness. Laser deposition resulted in a diffused and metallurgically sound interface between metallurgically incompatible brass coating and AISI410 steel substrate. The thermal conductivity of AISI410 steel increased from 27 W/mK to a maximum of 37 W/mK depending on the coating thickness, almost 50% gain. The absence of sharp interface between the coating and the substrate, as a result of laser processing, resulted in a low interfacial thermal contact resistance. Thermal performance tests showed that the brass coating can enhance the heat transfer rate of stainless steel substrate. These results show that novel and efficient feature based coatings can be exploited using laser-based advanced manufacturing technologies for various industrial applications.  相似文献   

7.
Laser surface cladding was carried out on a creep-resistant MRI 153M magnesium alloy with a mixture of Al and Al2O3 powders using a pulsed Nd:YAG laser at scan speeds of 21, 42, 63 and 84 mm/s. The Al2O3 particles partially or completely melted during laser irradiation and re-solidified with irregular shapes in the size range of 5-60 µm along with a few islands as large as 500 µm, within the grain-refined Mg-rich dendritic matrix. More than an order of magnitude improvement in wear resistance after cladding was attributed to the presence of ultra-hard Al2O3 particles, increased solid solubility of Al and other alloying elements, and a very fine dendritic microstructure as a result of rapid solidification in the cladded layer. However, corrosion resistance of the laser cladded alloy was reduced by almost an order of magnitude compared to that of the as-cast alloy mainly due to the presence of cracks and pores in the cladded layer.  相似文献   

8.
It is commonly observed that there is a performance gap between the corrosion resistance of thermally sprayed coatings and the equivalent bulk material. This is attributed to the significantly modified microstructure of the sprayed coatings. However, currently there is no detailed understanding of which aspects of microstructural modification are primarily responsible for this performance gap. In this work several deliberately microstructurally modified versions of the Ni-based superalloy Inconel 625 were produced. These were subjected to potentiodynamic electrochemical testing in 0.5 M H2SO4 to investigate the links between specific microstructural features and electrochemical behaviour. Samples were prepared by high-velocity oxy-fuel (HVOF) thermal spraying, laser surface remelting using a high power diode laser and conventional powder sintering. Microstructural features were examined by optical and scanning electron microscopy and X-ray diffraction. Potentiodynamic testing was carried out on the following forms of Inconel 625: wrought sheet; HVOF sprayed coatings; sintered powder compacts; laser melted wrought sheet and HVOF sprayed coatings. Using the corrosion behaviour, i.e. passive current density, of the wrought sheet as a baseline, the performance of different forms of Inconel 625 was compared. It is found that a fine dendritic structure (with associated microsegregation) produced by laser remelting wrought sheet has no significant effect on corrosion performance. Up to 12% porosity in sintered powder samples increases the passive current density by a factor of only around 2. As observed previously, the passive current density of HVOF sprayed coatings is 20-40 times greater. However, HVOF coatings subjected to laser surface remelting are found to have a passive current density close to that of wrought material. It is concluded that, whilst porosity in coatings produces some decrease in corrosion resistance, the main contributing factor is the galvanic corrosion of localised Cr-depleted regions which are associated with oxide inclusions within HVOF sprayed samples.  相似文献   

9.
Workpiece surface modification using electrical discharge machining   总被引:1,自引:0,他引:1  
Electrical discharge machining (EDM) is a widely used process in the mould / die and aerospace industries. Following a brief summary of the process, the paper reviews published work on the deliberate surface alloying of various workpiece materials using EDM. Details are given of operations involving powder metallurgy (PM) tool electrodes and the use of powders suspended in the dielectric fluid, typically aluminium, nickel, titanium, etc. Following this, experimental results are presented on the surface alloying of AISI H13 hot work tool steel during a die sink operation using partially sintered WC / Co electrodes operating in a hydrocarbon oil dielectric. An L8 fractional factorial Taguchi experiment was used to identify the effect of key operating factors on output measures (electrode wear, workpiece surface hardness, etc.). With respect to microhardness, the percentage contribution ratios (PCR) for peak current, electrode polarity and pulse on time were ˜24, 20 and 19%, respectively. Typically, changes in surface metallurgy were measured up to a depth of ˜30 μm (with a higher than normal voltage of ˜270 V) and an increase in the surface hardness of the recast layer from ˜620 HK0.025 up to ˜1350 HK0.025.  相似文献   

10.
基于响应面法的Inconel625镍基合金GTAW堆焊工艺优化   总被引:1,自引:0,他引:1       下载免费PDF全文
梁恩宝  胡绳荪  王志江 《焊接学报》2016,37(6):85-88,108
堆焊层稀释率和厚度是影响电弧堆焊质量的重要因素,它们是由各焊接参数相互影响综合作用决定的。文中通过中心复合设计试验方案,基于响应面法建立了Inconel625镍基合金GTAW堆焊参数(焊接电流、焊接速度、送丝速度)与响应值稀释率、堆焊层厚度之间的数学模型,分析了各焊接参数对稀释率和堆焊层厚度的影响,并对堆焊参数进行了优化。结果表明,文中试验条件下送丝速度对堆焊层的厚度有着显著的影响,焊接速度和焊接电流对堆焊层厚度的影响较小;焊接电流对稀释率的影响最大,而焊接速度的影响最小;焊接电流和送丝速度的交互作用对稀释率有着重要的影响。  相似文献   

11.
MG and its alloys are widely used in aerospace andautomotive in industry.Its poor corrosion resistancerestricts application of Mg alloy.Laser cladding andlaser surface melting are advantageous processes forimprovement of the corrosion resistance of themagnesium alloy[1-2].In the present study,lasercladding of an Al-11.7Wt%Si alloy with two differentthickness on ZM5die cast alloy was performed withCC>2laser with different powder thickness.1.Experimental ProcedureDie cast plates of ZM5Mg a…  相似文献   

12.
In this study, an Nd:YAG laser was used to carry out laser surface remelting treatment on FeCrNiMnMox (x = 0, 0.5, 1) alloys. A study was conducted on the potential impact of Mo on the microstructure and corrosion resistance of the laser-remelted layer. According to the research results, FeCrNiMnMox alloys were more effective in refining the dendrites, compared with the matrix, whereas the FeCrNiMn alloys' remelted layer exhibited an almost single face-centered cubic (FCC) structure. In comparison, FeCrNiMnMo0.5 and FeCrNiMnMo1 alloys' remelted layer displayed the FCC and σ phase. In addition, the dendrite crystals' microstructure can be clearly refined by Mo alloying. Mo is effective in improving the corrosion resistance of the FeCrNiMnMox alloys' remelted layer in 3.5% NaCl solution. The pitting resistance of Mo-containing-remelted layers is significantly higher, compared with Mo-free alloy's remelted layer, and the FeCrNiMnMo0.5-remelted layer shows the most satisfactory corrosion resistance. As revealed by X-ray photoelectron spectroscopy analyses, the addition of molybdenum promotes the generation of Cr2O3 and enhances the corrosion resistance of the remelted layer.  相似文献   

13.
The microstructure and corrosion behavior of commercial alloy ZE41 modified by surface laser cladding with Al-Si powder mixture was studied by SEM, TEM, X-ray diffraction and electrochemical methods. The coating is composed of an Al-Mg matrix and dendrite precipitates of Mg2Si. In function of the laser speed, the matrix is formed by a Mg solid solution in Al or by the intermetallic phase Mg17Al12. The presence of different matrixes is responsible for galvanic corrosion and decrease of corrosion resistance in interfacial area between coats. Isolated samples of the bulk coatings material showed similar corrosion potentials inspite of different matrix composition. This interpreted in terms of a mechanism involving two steps: (1) an initial dissolution of anodic Mg2Si particles followed by (2) pitting in the formed crevices. The proposed mechanism corresponds well with the experimental observations and the mechanisms of localized corrosion observed for aluminium alloys in the chloride media described in the literature. Improved corrosion resistance can be achieved by the microstructure homogenization through the optimization of laser parameters and/or following heat treatment.  相似文献   

14.
Titanium carbide particles reinforced Fe-based surface composite coatings were fabricated by laser cladding using a 5 kW CO2 laser. The microstructure, phase structure and wear properties were investigated by means of scanning electron microscopy, transmission electron microscopy and X-ray diffraction, as well as dry sliding wear test. The results showed that TiC carbides were formed via in situ reaction between ferrotitanium and graphite in the molten pool during the laser-clad process. The morphology of TiC is mainly cubic and dendritic form; and the TiC carbides were distributed uniformly in the composite coating. The TiC/matrix interface was found to be free from cracks and deleterious phases. The coatings reinforced by TiC particles revealed higher wear resistance and lower friction coefficient than that of the substrate and FeCrBSi laser-clad coating.  相似文献   

15.
Laser surface microstructuring of porous alumina ceramic is investigated using a continuous wave Nd:YAG laser. The surface microstructure development is based on the rapid surface melting and subsequent solidification resulting in the evolution of crystallographic and morphological textures. The results indicated that surface microstructure is greatly influenced by the laser processing parameters. Detailed investigations of the influence of laser fluence on the thermal history and microstructural parameters are presented. Such investigations are intended to facilitate the tailoring of surface microstructures by controlling the laser processing parameters.  相似文献   

16.
In the present study, laser surface alloying of aluminium with WC + Co + NiCr (in the ratio of 70:15:15) has been conducted using a 5 kW continuous wave (CW) Nd:YAG laser (at a beam diameter of 0.003 m), with the output power ranging from 3 to 3.5 kW and scan speed from 0.012 m/s to 0.04 m/s by simultaneous feeding of precursor powder (at a flow rate of 1 × 10− 5 kg/s) and using He shroud at a gas flow rate of 3 × 10− 6 m3/s. The effect of laser power and scan speed on the characteristics (microstructures, phases and composition) and properties (wear and corrosion resistance) of the surface alloyed layer have been investigated in details. Laser surface alloying leads to development of fine grained aluminium with the dispersion of WC, W2C, Al4C3, Al9Co2, Al3Ni, Cr23C6, and Co6W6C. The microhardness of the alloyed zone is significantly improved to a maximum value of 650 VHN as compared to 22 VHN of the as-received aluminium substrate. The mechanism of microhardness enhancement has been established. The fretting wear behavior of the alloyed zone was evaluated against WC by Ball-on-disc wear testing unit and the mechanism of wear was established.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号