首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
This paper describes state‐of‐the‐art analysis of grain boundary populations by EBSD, with particular emphasis on advanced, nonstandard analysis. Data processing based both on misorientation alone and customised additions which include the boundary planes are reviewed. Although commercial EBSD packages offer comprehensive data processing options for interfaces, it is clear that there is a wealth of more in‐depth data that can be gleaned from further analysis. In particular, determination of all five degrees of freedom of the boundary population provides an exciting opportunity to study grain boundaries by EBSD in a depth that was hitherto impossible. In this presentation we show ‘five‐parameter’ data from 50 000 boundary segments in grain boundary engineered brass. This is the first time that the distribution of boundary planes has been revealed in a grain boundary engineered material.  相似文献   

2.
Selected area channeling patterns imaged on an SEM are digitized and displayed on the screen of a Macintosh computer, on which the user selects channeling bands that are measured to determine orientation. Grain boundary misorientations are found using the orientation information for pairs of grains adjacent at grain boundaries, and the boundaries are classified as low angle boundaries (LABs), coincident site lattice boundaries (CSLBs), or general boundaries (GHABs) based on the misorientation information. The technique was implemented to analyze the grain boundary character distributions (GBCDs) in Ni-16Cr-9Fe. The GBCDs of solution annealed material were similar to those expected in an aggregate of randomly oriented polycrystals. However, sequential thermomechanical treatments (5% tensile strain + 945°C:75 min + 2% tensile strain + 890°C:15 h + 3% tensile strain + 890°C:20 h or 9% compressive strain + 890°C:20 h + 9% compressive strain + 890°C:20 h + 3% compressive strain + 890°C:15 h) applied after the solution anneal lowered the proportions of GHABs in the GBCDs from 76–79% to 47–64%. The CSL-enhanced GBCDs of both the tensile-deformed samples and the compression-deformed sample appear to have evolved mainly through impingement of twin and twin-related boundaries during recrystallization; the CSL-enhanced GBCD of a compression-deformed sample appears to have been influenced by grain rotation processes to a greater degree than were the tensile-deformed samples. The CSL boundaries in the CSL-enhanced GBCDs were, in general, closer to the exact CSL misorientations than were those in the near-random GBCDs of the solution annealed material. An analysis of the distribution of misorientation axes did not indicate any correlation between grain misorientation texture and GBCD evolution.  相似文献   

3.
Low-angle subgrain misorientations in deformed NaCl   总被引:1,自引:0,他引:1  
The development of subgrain boundary misorientations with strain in NaCl polycrystals has been investigated. At low strains, a power law relationship exists between strain and average misorientations. The accuracy of this relationship is assessed in terms of material and electron backscattered diffraction (EBSD) processing parameters and is found to hold for a material of constant grain size deformed in compression, providing EBSD mapping and processing conditions were similar. Average misorientations are strongly influenced by grain orientation, suggesting that the misorientation–strain relationship may also be texture dependent in materials with high plastic anisotropy. A slight grain size dependency of the average misorientations was observed.  相似文献   

4.
EBSD orientation mapping has been used to derive subgrain boundary misorientation distributions in a series of hot deformed and etched NaCl samples. The main objective of this study has been to examine the influence of data processing, noise caused by angular resolution limits and step size on the subgrain misorientation distributions in hot deformed NaCl. Processing of non‐indexed EBSD patterns increased the average misorientations in etched NaCl. Noise contributed significantly to low angle misorientation peaks for step sizes less than the minimum subgrain size. Orientation data collected using a step size larger than the average subgrain size cumulated misorientations across individual subgrains and effectively measured an orientation gradient between steps. Orientation gradient distributions were not influenced by noise. Average misorientation values calculated from large step data correlated well with average misorientation from small step size data. Average misorientations showed a power law relationship with strain. Three types of substructures were identified using scanning electron microscopy and EBSD mapping, equiaxed subgrains, long subgrain boundaries and a core‐mantle subgrain arrangement.  相似文献   

5.
The crystallographic grain orientation of ZrB2‐ZrC composites manufactured using a spark plasma sintering (SPS) method, a new sintering technique in development for poorly sinterable ceramic materials, was analysed by the scanning electron microscopy‐electron backscattered diffraction (SEM‐EBSD) method. Their crystallographic features have been compared with those of a conventionally sintered specimen using a pressureless sintering (PLS) method. In the composite sintered by PLS, (0001) planes of ZrB2 were orientated in the direction parallel to the specimen surface (RD) but (101 0) and (211 0) planes randomly orientated. In the case of SPS, (0001) planes of ZrB2 were orientated normal to the specimen surface (ND) and weakly to the RD. In both cases of PLS and SPS, ZrC grains had a randomly orientated grain structure. The distribution of grain boundary misorientation of PLS and SPS‐processed composites showed the same tendency that high‐angle boundaries were more prevalent than low‐angle boundaries. But in the case of ZrC grains in the SPS sample, the proportion of CSL boundaries with low sigma value (3, 5, 7, 9, 11) was relatively larger.  相似文献   

6.
Thermomechanical controlled rolling (TMCR) has been widely used as an effective method to improve the properties of steels. In the present paper, two commercial TMCR microalloyed steels were investigated. The grain size distributions and grain boundary misorientation angles were measured using electron backscattered diffraction patterns obtained using orientation imaging microscopy (OIM). The equivalent grain diameters were also measured using optical microscopy. Mixed coarse‐ and fine‐grained regions were observed and the microhardness values were measured for both areas. Grain boundary misorientation angle distributions showed that the magnitude of mesotexture developed in the steel is dependent upon the rolling passes, the reduction ratio and the rolling temperatures including the finish rolling temperature. The surface layer, up to 2 mm depth, in Com‐A steel had about 55% of grain boundaries with a misorientation angle below 12°, much higher than in the central area (~30%), whereas Com‐B steel showed similar distributions from the rolling surface to the centre. Misorientation results obtained from laboratory rolled steel plates with various TMCR procedures are also discussed as are OIM results from Charpy impact brittle fracture surfaces examining the effect of misorientation on crack propagation.  相似文献   

7.
Reliable EBSD mapping of 90° domains in a tetragonal ferroelectric perovskite has been achieved for the first time, together with reliable automated orientation determination from TEM‐Kikuchi patterns. This has been used to determine misorientation angles at 90° domain boundaries and thus local c/a ratios. The sources of orientation noise/error and their effects on the misorientation angle data have been thoroughly analyzed and it is found that this gives a cosine distribution of misorientation angles about the mean with a characteristic width related to the width of the orientation noise distribution. In most cases, a good agreement is found between local c/a ratios and global measurements by X‐ray diffraction, but some clear discrepancies have also been found suggesting that real local variations are present, perhaps as a consequence of compositional inhomogeneities.  相似文献   

8.
The structures of boundaries in a deformed and dynamically recovered and recrystallized quartz polycrystal (mylonite) were characterized by transmission electron microscopy, after the misorientation angles across the same grain boundaries had been analysed using electron backscatter diffraction in a scanning electron microscope. In this new approach, a specific sample area is mapped with electron backscatter diffraction, and the mapped area is then attached to a foil, and by the ion beam thinned for transmission electron microscopy analysis. Dislocations in grain boundaries were recognized as periodic and parallel fringes. The fringes associated with dislocations are observed in boundaries with misorientations less than 9°, whereas such fringes cannot be seen in the boundaries with misorientations larger than 17°. Some boundaries with misorientations between 9° and 17° generally have no structures associated with dislocation. One segment of a boundary with a misorientation of 13.5° has structures associated with dislocations. It is likely that the transition from low‐angle to high‐angle boundaries occurs at misorientations ranging from approximately 9° to 14°. Change in the grain boundary structure presumably influences the mobility of the boundaries. In the studied deformed quartz vein, a relative dearth of boundaries between misorientation angles of θ = 2° and θ = 15° has previously been reported, and high‐angle boundaries form cusps where they intersect low‐angle boundaries, suggesting substantial mobility of high‐angle boundaries.  相似文献   

9.
Electrodeposited nanocrystalline materials are expected to have a homogeneous grain size and a narrow grain size distribution. In Co–Ni electrodeposited films, however, under certain conditions an undesired columnar grain structure is formed. Fully automated three‐dimensional (3D) orientation microscopy, consisting of a combination of precise material removal by focussed ion beam and subsequent electron backscatter diffraction (EBSD) analysis, was applied to fully characterize the grain boundaries of these columnar grains in order to gain further understanding on their formation mechanisms. Two‐dimensional orientation microscopy on these films indicated that the development of columnar grains could be related to the formation of low‐energy triple junctions. 3D EBSD allowed us to verify this suggestion and to determine the boundary planes of these triples. The triplets are formed by grain boundaries of different quality, a coherent twin on the {} plane, an incoherent twin and a large‐angle grain boundary. These three boundaries are related to each other by a rotation about the 〈〉 direction. A second particularity of the columnar grains is the occurrence of characteristic orientation gradients created by regular defects in the grain. Transmission electron microscopy was applied to investigate the character of the defects. For this purpose, a sample was prepared with the focussed ion beam from the last slice of the 3D EBSD investigation. From the TEM and 3D EBSD observations, a growth mechanism of the columnar grains is proposed.  相似文献   

10.
The results from an emerging method of nondestructive grain boundary characterization, with unprecedented sensitivity to neighbor-grain misorientation and grain boundary morphology are reported. The method utilizes differential aperture X-ray microscopy to determine the local crystallographic orientation of submicron volumes within polycrystalline materials. Initial measurements are described for a recrystallized Ni sample where the grain boundary type was identified at 85 grain boundaries within the framework of an ideal coincident site lattice (CSL) model. The remarkable resolution of this method is demonstrated by the <0.03 degrees deviations of misorientation measured for Sigma3 (twin) boundaries. Because of its high angular and spatial resolution, this new approach to grain boundary characterization can provide quantitative tests of grain boundary models with new insights for grain boundary engineering efforts.  相似文献   

11.
Extracting twins from orientation imaging microscopy scan data   总被引:1,自引:0,他引:1  
Automated electron backscatter diffraction or orientation imaging microscopy (OIM) provides spatially specific measurements of crystallographic orientation. These measurements are typically collected on regular grids. By inspecting the misorientation between neighbouring measurements on the grid, potential twin boundaries can be identified. If the misorientation is within some given tolerance of a specified twin misorientation, the boundary separating the two measurements may be identified as a potential twin boundary. In addition, for a coherent twin, the twinning planes must be coincident with the grain boundary plane. As OIM scans are inherently two‐dimensional, the scan data provide only limited information on the boundary plane. Thus, it is not possible to ascertain definitively whether the twinning planes are coincident with the boundary plane. Nonetheless, the alignment of the surface traces of the twinning planes with the trace of the boundary provides a partial indication of coincidence. An automated approach has been developed that allows data concerning both twin criterion to be extracted from OIM scans. Application of the methodology to deformed zirconium suggests that the twinning planes remain coherent during deformation. The methodology was also used to improve grain size distributions measured by OIM. These results more closely match those obtained by conventional metallography.  相似文献   

12.
Orientation mapping using automated electron backscatter diffraction (EBSD) is now a common technique for characterizing microstructures. Improvements in software and hardware have resulted in high‐speed mapping capabilities above 80 000 points h?1. For ‘routine’ microstructural analyses of materials such as steel and aluminium (e.g. texture and grain size measurements and high angle boundary characterization), high‐speed orientation mapping is an ideal approach with minimal penalty on the final statistics. However, for the accurate analysis of very low angle boundaries and for routine analyses of more difficult materials (e.g. most rock samples), we advocate a more patient approach to orientation mapping with an emphasis on data accuracy and reliability. It is important that the objectives of any EBSD analysis are carefully considered before starting – in this way the maximum potential of an EBSD system can be achieved.  相似文献   

13.
The evolution of crystallographic texture and deformation substructure was studied in a type 316L austenitic stainless steel, deformed in rolling at 900 °C to true strain levels of about 0.3 and 0.7. Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used in the investigation and a comparison of the substructural characteristics obtained by these techniques was made. At the lower strain level, the deformation substructure observed by EBSD appeared to be rather poorly developed. There was considerable evidence of a rotation of the pre‐existing twin boundaries from their original orientation relationship, as well as the formation of highly distorted grain boundary regions. In TEM, at this strain level, the substructure was more clearly revealed, although it appeared rather inhomogeneously developed from grain to grain. The subgrains were frequently elongated and their boundaries often approximated to traces of {111} slip planes. The corresponding misorientations were small and largely displayed a non‐cumulative character. At the larger strain, the substructure within most grains became well developed and the corresponding misorientations increased. This resulted in better detection of sub‐boundaries by EBSD, although the percentage of indexing slightly decreased. TEM revealed splitting of some sub‐boundaries to form fine microbands, as well as the localized formation of microshear bands. The substructural characteristics observed by EBSD, in particular at the larger strain, generally appeared to compare well with those obtained using TEM. With increased strain level, the mean subgrain size became finer, the corresponding mean misorientation angle increased and both these characteristics became less dependent on a particular grain orientation. The statistically representative data obtained will assist in the development of physically based models of microstructural evolution during thermomechanical processing of austenitic stainless steels.  相似文献   

14.
Electron backscatter diffraction (EBSD) is a useful technique for measuring the orientation of individual grains and for determining grain boundary misorientations in polycrystals. However, its application to ceramics is more difficult than to metals, because the surface quality that can be achieved often makes the Kikuchi patterns blurred. As a consequence, it can be difficult, even for automated systems, to differentiate between different grain orientations, which have similar patterns. In this paper, we carry out EBSD analyses of SrTiO3 polycrystalline material prepared with different polishing methods, and we consider the effect of different criteria in interpreting the EBSD patterns from them. In particular, we investigate the CSL statistics using both the Palumbo and Aust and the Brandon criteria in this situation.  相似文献   

15.
A method of accurately measuring misorientations by electron backscatter diffraction (EBSD), which is an extension of that proposed by Wilkinson and based on the comparison of diffraction patterns, is described. The method has been applied to linescans, and found to improve the angular resolution by a factor of more than 30. The consequent improvement in determining misorientation axes is also analysed. Small changes of orientation very close to some low-angle boundaries were investigated and found to be artefacts of the analysis. Measurements of the area from which diffraction patterns are generated show this to be much larger than the effective spatial resolution of EBSD, and it is concluded that this may be a limiting factor in the use of EBSD for microstructural characterization.  相似文献   

16.
The present paper reports a comparative analysis of Σ3 (in the coincidence site lattice notation) grain boundary types, in two grain boundary engineered brass specimens, by use of electron backscatter diffraction (EBSD) data coupled to the measurement of boundary traces in a single section. Although most of the data were analysed using the new single‐section technique, an analysis of boundary plane orientations in three dimensions was made in a subset of the data in order to validate the single section methodology. The single‐section trace analysis procedure, coupled with EBSD, is a viable and robust tool for analysis of Σ3 grain boundary planes. The procedure provides data which suggest that part of the enhanced strain‐to‐failure in specimen B compared to specimen A is the result of an increased proportion of mobile Σ3 boundaries, i.e. those which are displaced from the {111} symmetrical tilt configuration.  相似文献   

17.
Grain boundaries play a significant role in materials by initiating reactions and collecting impurities. Here we present FAGO (Fabric Analyser Grain boundary recOnstruction), a first step towards the automatic determination of three‐dimensional (3D) grain boundary geometry using polarised light. The trace of the grain boundaries from 2D rock thin sections are determined primarily from data acquired using an automatic fabric analyser microscope and the FAME software (fabric analyser‐based microstructure evaluation; Peternell and colleagues and Hammes and Peternell). Based on the Fabric Analyser G50's unique arrangement of nine differently oriented light sources the retardation can be determined independently for each light direction and at each pixel in the field of view. FAGO combines these retardation datasets for each individual pixel together with retardation profiles across grain boundaries, to determine the orientations of the boundaries. The grain boundary traces are then broken up into segments of equal orientation, using the profile‐obtained orientation data. Finally, a 3D grain boundary model is reconstructed. The data processing is almost fully automatic using the MATLAB® environment. Only minor manual inputs are required.  相似文献   

18.
Study on recrystallization of deformed metal is important for practical industrial applications. Most of studies about recrystallization behavior focused on the migration of the high‐angle grain boundaries, resulting in lack of information of the kinetics of the low angle grain boundary migration. In this study, we focused on the migration of the low angle grain boundaries during recrystallization process. Pure nickel deformed by shot peening which induced plastic deformation at the surface was investigated. The surface of the specimen was prepared by mechanical polishing using diamond slurry and colloidal silica down to 0.02 μm. Sequential heat treatment under a moderate annealing temperature facilitates to observe the migration of low angle grain boundaries. The threshold energy for low angle boundary migration during recrystallization as a function of misorientation angle was evaluated using scanning electron microscopy techniques. A combination of electron channeling contrast imaging and electron backscatter diffraction was used to measure the average dislocation density and a quantitative estimation of the stored energy near the boundary. It was observed that the migration of the low angle grain boundaries during recrystallization was strongly affected by both the stored energy of the deformed matrix and the misorientation angle of the boundary. Through the combination of electron channeling contrast imaging and electron backscatter diffraction, the threshold stored energy for the migration of the low angle grain boundaries was estimated as a function of the boundary misorientation.  相似文献   

19.
The misorientation relative to the average orientation of a grain and the point-to-point relative misorientation along a line across a moderately cold deformed grain, calculated from an electron backscatter diffraction (EBSD) dataset, are analysed in detail by visualizing both the misorientation angle and the misorientation axis. The significance of monitoring the misorientation axis is illustrated by an example of a grain subdivided into a misorientation band structure. A new technique to visualize the subdivision structure by assigning colours to misorientations in such a way that the contrast is maximized within a grain is introduced and discussed. Furthermore, some methods for grain boundary reconstruction from EBSD datasets are compared with the map of the confidence index in order to provide a validation of the accuracy of these methods.  相似文献   

20.
Crystallographic properties of silicide mediated crystallization (SMC) polycrystalline silicon (poly Si) and excimer laser annealing (ELA) poly Si were studied by electron backscattered diffraction. Large‐grain sized poly Si with a large fraction of low‐angle grain boundaries was acquired by SMC, and small‐grain sized poly Si with high‐angle grain boundaries especially around 60° was acquired by ELA. The thin film transistor (TFT) device characteristics were investigated in view of short‐range crystallinity (pattern quality) and long‐range crystallinity (misorientation distribution) of the specimens. Short‐range crystallinity did not significantly affect the TFT device characteristics, and long‐range crystallinity considering the low energy level of special boundaries could be better related to the TFT device characteristics of poly Si.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号