首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a non‐local viscoelastic foundation model is proposed and used to analyse the dynamics of beams with different boundary conditions using the finite element method. Unlike local foundation models the reaction of the non‐local model is obtained as a weighted average of state variables over a spatial domain via convolution integrals with spatial kernel functions that depend on a distance measure. In the finite element analysis, the interpolating shape functions of the element displacement field are identical to those of standard two‐node beam elements. However, for non‐local elasticity or damping, nodes remote from the element do have an effect on the energy expressions, and hence the damping and stiffness matrices. The expressions of these direct and cross‐matrices for stiffness and damping may be obtained explicitly for some common spatial kernel functions. Alternatively numerical integration may be applied to obtain solutions. Numerical results for eigenvalues and associated eigenmodes of Euler–Bernoulli beams are presented and compared (where possible) with results in literature using exact solutions and Galerkin approximations. The examples demonstrate that the finite element technique is efficient for the dynamic analysis of beams with non‐local viscoelastic foundations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
A non‐iterative, finite element‐based inverse method for estimating surface heat flux histories on thermally conducting bodies is developed. The technique, which accommodates both linear and non‐linear problems, and which sequentially minimizes the least squares error norm between corresponding sets of measured and computed temperatures, takes advantage of the linearity between computed temperatures and the instantaneous surface heat flux distribution. Explicit minimization of the instantaneous error norm thus leads to a linear system, i.e. a matrix normal equation, in the current set of nodal surface fluxes. The technique is first validated against a simple analytical quenching model. Simulated low‐noise measurements, generated using the analytical model, lead to heat transfer coefficient estimates that are within 1% of actual values. Simulated high‐noise measurements lead to h estimates that oscillate about the low‐noise solution. Extensions of the present method, designed to smooth oscillatory solutions, and based on future time steps or regularization, are briefly described. The method's ability to resolve highly transient, early‐time heat transfer is also examined; it is found that time resolution decreases linearly with distance to the nearest subsurface measurement site. Once validated, the technique is used to investigate surface heat transfer during experimental quenching of cylinders. Comparison with an earlier inverse analysis of a similar experiment shows that the present method provides solutions that are fully consistent with the earlier results. Although the technique is illustrated using a simple one‐dimensional example, the method can be readily extended to multidimensional problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
A universal, practical, a priori, numerical procedure is presented by which to realistically bind the spectral condition number of the global stiffness matrix generated by the finite element least‐squares method. The procedure is then applied to second and fourth‐order problems in one and two dimensions to show that the condition of the global stiffness matrix thus generated is, in all instances, proportional to but the diameter of the element squared. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Dynamic crack‐branching instabilities in a brittle material are studied numerically by using a non‐local damage model. PMMA is taken as our model brittle material. The simulated crack patterns, crack velocities, and dissipated energies compare favorably with experimental data gathered from the literature, as long as the critical strain for damage initiation as well as the parameters for a rate‐dependent damage law are carefully selected. Nonetheless, the transition from a straight crack propagation to the emergence of crack branches is very sensitive to the damage initiation threshold. The transition regime is thus a particularly interesting challenge for numerical approaches. We advocate using the present numerical study as a benchmark to test the robustness of alternative non‐local numerical approaches. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Edge‐based data structures are used to improve computational efficiency of inexact Newton methods for solving finite element non‐linear solid mechanics problems on unstructured meshes. Edge‐based data structures are employed to store the stiffness matrix coefficients and to compute sparse matrix–vector products needed in the inner iterative driver of the inexact Newton method. Numerical experiments on three‐dimensional plasticity problems have shown that memory and computer time are reduced, respectively, by factors of 4 and 6, compared with solutions using element‐by‐element storage and matrix–vector products. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
This study presents a numerical integration method for the non‐linear viscoelastic behaviour of isotropic materials and structures. The Schapery's three‐dimensional (3D) non‐linear viscoelastic material model is integrated within a displacement‐based finite element (FE) environment. The deviatoric and volumetric responses are decoupled and the strain vector is decomposed into instantaneous and hereditary parts. The hereditary strains are updated at the end of each time increment using a recursive formulation. The constitutive equations are expressed in an incremental form for each time step, assuming a constant incremental strain rate. A new iterative procedure with predictor–corrector type steps is combined with the recursive integration method. A general polynomial form for the parameters of the non‐linear Schapery model is proposed. The consistent algorithmic tangent stiffness matrix is realized and used to enhance convergence and help achieve a correct convergent state. Verifications of the proposed numerical formulation are performed and compared with a previous work using experimental data for a glassy amorphous polymer PMMA. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
8.
A new class of fitted operator finite difference methods are constructed via non‐standard finite difference methods ((NSFDM)s) for the numerical solution of singularly perturbed differential difference equations having both delay and advance arguments. The main idea behind the construction of our method(s) is to replace the denominator function of the classical second‐order derivative with a positive function derived systematically in such a way that it captures significant properties of the governing differential equation and thus provides the reliable numerical results. Unlike other FOFDMs constructed in standard ways, the methods that we present in this paper are fairly simple to construct (and thus enrich the class of fitted operator methods by adding these new methods). These methods are shown to be ε‐uniformly convergent with order two which is the highest possible order of convergence obtained via any fitted operator method for the problems under consideration. This paper further clarifies several doubts, e.g. why a particular scheme is not suitable for the whole range of values of the associated parameters and what could be the possible remedies. Finally, we provide some numerical examples which illustrate the theoretical findings. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The ‘variable‐element‐topology finite element method’ (VETFEM) is a finite‐element‐like Galerkin approximation method in which the elements may take arbitrary polyhedral form. A complete development of the VETFEM is given here for both two and three dimensions. A kinematic enhancement of the displacement‐based formulation is also given, which effectively treats the case of near‐incompressibility. Convergence of the method is discussed and then illustrated by way of a 2D problem in elastostatics. Also, the VETFEM's performance is compared to that of the conventional FEM with eight‐node hex elements in a 3D finite‐deformation elastic–plastic problem. The main attraction of the new method is its freedom from the strict rules of construction of conventional finite element meshes, making automatic mesh generation on complex domains a significantly simpler matter. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Variational principles with relaxed inter‐element continuity requirement for non‐conforming element methods in linear and non‐linear analyses are developed. Based on the principles, any non‐conforming element displacement can be used directly to derive the explicit expressions of non‐conforming displacement function, which can ensure the passage of the patch test C for the requirement of convergence Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
In spite of significant advancements in automatic mesh generation during the past decade, the construction of quality finite element discretizations on complex three‐dimensional domains is still a difficult and time demanding task. In this paper, the partition of unity framework used in the generalized finite element method (GFEM) is exploited to create a very robust and flexible method capable of using meshes that are unacceptable for the finite element method, while retaining its accuracy and computational efficiency. This is accomplished not by changing the mesh but instead by clustering groups of nodes and elements. The clusters define a modified finite element partition of unity that is constant over part of the clusters. This so‐called clustered partition of unity is then enriched to the desired order using the framework of the GFEM. The proposed generalized finite element method can correctly and efficiently deal with: (i) elements with negative Jacobian; (ii) excessively fine meshes created by automatic mesh generators; (iii) meshes consisting of several sub‐domains with non‐matching interfaces. Under such relaxed requirements for an acceptable mesh, and for correctly defined geometries, today's automated tetrahedral mesh generators can practically guarantee successful volume meshing that can be entirely hidden from the user. A detailed technical discussion of the proposed generalized finite element method with clustering along with numerical experiments and some implementation details are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a novel face‐based smoothed finite element method (FS‐FEM) to improve the accuracy of the finite element method (FEM) for three‐dimensional (3D) problems. The FS‐FEM uses 4‐node tetrahedral elements that can be generated automatically for complicated domains. In the FS‐FEM, the system stiffness matrix is computed using strains smoothed over the smoothing domains associated with the faces of the tetrahedral elements. The results demonstrated that the FS‐FEM is significantly more accurate than the FEM using tetrahedral elements for both linear and geometrically non‐linear solid mechanics problems. In addition, a novel domain‐based selective scheme is proposed leading to a combined FS/NS‐FEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The implementation of the FS‐FEM is straightforward and no penalty parameters or additional degrees of freedom are used. The computational efficiency of the FS‐FEM is found better than that of the FEM. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
As in the case of two‐dimensional topology design optimization, numerical instability problems similar to the formation of two‐dimensional checkerboard patterns occur if the standard eight‐node conforming brick element is used. Motivated by the recent success of the two‐dimensional non‐conforming elements in completely eliminating checkerboard patterns, we aim at investigating the performance of three‐dimensional non‐conforming elements in controlling the patterns that are estimated overly stiff by the brick elements. To this end, we will investigate how accurately the non‐conforming elements estimate the stiffness of the patterns. The stiffness estimation is based on the homogenization method by assuming the periodicity of the patterns. To verify the superior performance of the elements, we consider three‐dimensional compliance minimization and compliant mechanism design problems and compare the results by the non‐conforming element and the standard 8‐node conforming brick element. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
A meshless method is presented which has the advantages of the good meshless methods concerning the ease of introduction of node connectivity in a bounded time of order n, and the condition that the shape functions depend only on the node positions. Furthermore, the method proposed also shares several of the advantages of the finite element method such as: (a) the simplicity of the shape functions in a large part of the domain; (b) C0 continuity between elements, which allows the treatment of material discontinuities, and (c) ease of introduction of the boundary conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
A finite element formulation governing the geometrically non‐linear thermoelastic behaviour of plates and shells made of functionally graded materials is derived in this paper using the updated Lagrangian approach. Derivation of the formulation is based on rewriting the Green–Lagrange strain as well as the 2nd Piola–Kirchhoff stress as two second‐order functions in terms of a through‐the‐thickness parameter. Material properties are assumed to vary through the thickness according to the commonly used power law distribution of the volume fraction of the constituents. Within a non‐linear finite element analysis framework, the main focus of the paper is the proposal of a formulation to account for non‐linear stress distribution in FG plates and shells, particularly, near the inner and outer surfaces for small and large values of the grading index parameter. The non‐linear heat transfer equation is also solved for thermal distribution through the thickness by the Rayleigh–Ritz method. Advantages of the proposed approach are assessed and comparisons with available solutions are presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A refined non‐conforming triangular plate/shell element for geometric non‐linear analysis of plates/shells using the total Lagrangian/updated Lagrangian approach is constructed in this paper based on the refined non‐conforming element method for geometric non‐linear analysis. The Allman's triangular plane element with vertex degrees of freedom and the refined triangular plate‐bending element RT9 are used to construct the present element. Numerical examples demonstrate that the accuracy of the new element is quite high in the geometric non‐linear analysis of plates/shells. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
A new approach to process optimal design in non‐isothermal, steady‐state metal forming is presented. In this approach, the optimal design problem is formulated on the basis of the integrated thermo‐mechanical finite element process model so as to cover a wide class of the objective functions and to accept diverse process parameters as design variables, and a derivative‐based approach is adopted as a solution technique. The process model, the formulation for process optimal design, and the schemes for the evaluation of the design sensitivity, and an iterative procedure for design optimization are described in detail. The validity of the schemes for the evaluation of the design sensitivity is examined by performing a series of numerical tests. The capability of the proposed approach is demonstrated through applications to some selected process design problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
19.
The finite cell method (FCM) is an immersed domain finite element method that combines higher‐order non‐boundary‐fitted meshes, weak enforcement of Dirichlet boundary conditions, and adaptive quadrature based on recursive subdivision. Because of its ability to improve the geometric resolution of intersected elements, it can be characterized as an immersogeometric method. In this paper, we extend the FCM, so far only used with Cartesian hexahedral elements, to higher‐order non‐boundary‐fitted tetrahedral meshes, based on a reformulation of the octree‐based subdivision algorithm for tetrahedral elements. We show that the resulting TetFCM scheme is fully accurate in an immersogeometric sense, that is, the solution fields achieve optimal and exponential rates of convergence for h‐refinement and p‐refinement, if the immersed geometry is resolved with sufficient accuracy. TetFCM can leverage the natural ability of tetrahedral elements for local mesh refinement in three dimensions. Its suitability for problems with sharp gradients and highly localized features is illustrated by the immersogeometric phase‐field fracture analysis of a human femur bone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Time‐integration methods for semidiscrete equations emanating from parabolic differential equations are analysed in the frequency domain. The discrete‐time transfer functions of three popular methods are derived, and subsequently the forced response characteristics of single modes are studied in the frequency domain. To enable consistent comparison of the frequency responses of different algorithms, three characteristic numbers are identified. Frequency responses and L2‐norms of the phase and magnitude errors are compared for the three time‐integration algorithms. The examples demonstrate that frequency‐domain analysis provides substantial insight into the time‐domain properties of time‐integration algorithms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号