共查询到20条相似文献,搜索用时 0 毫秒
1.
A compact slot antenna with an overall dimension of 30 × 30 × 1.6 mm3 is proposed for dual band applications. The radiating element is a hexagonal shape patch which protrudes from a Co‐Planar Waveguide (CPW) feed into a step shape slot. The slot is basically rectangular in shape and is extended by inserting rectangular cuts of different sizes on the ground plane around it. The ultrawide impedance bandwidth is achieved using asymmetric feed line along with extended rectangular cuts around the slot. For realizing the second band for personal communication system applications (near 1.9 GHz), a metallic stub of quarter wave length is attached at the top of the slot. The measured impedance bandwidth (for S11 < ?10 dB) is 110 MHz (1.86–1.97 GHz) for the first band and 9 GHz (3.0–12.0 GHz) for the second band. The antenna is further characterized by omnidirectional radiation patterns in the H‐plane, dumb‐bell shape radiation patterns in the E‐plane and a peak gain of 3–5 dBi over the ultrawideband. All the measured results are found to be in good agreement with the simulated results. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:243–254, 2015. 相似文献
2.
3.
In this article a novel wide‐band artificial magnetic conductor (AMC) based wideband directional antenna is presented for ultra‐wideband (UWB) applications. The proposed novel cross‐slot AMC (CSAMC) achieves wide ±90° reflection phase bandwidth of 4.07 GHz (44.69%) and is used as a reflector. The overall antenna structure is designed with 4 × 4 CSAMC unit cell array and has very compact size of (0.584λ0 × 0.584λ0). The proposed structure improves the radiation properties and exhibits 91.5% (3.13‐8.41 GHz) impedance bandwidth (VSWR ≤2). Additionally, it results in significant improvement in gain and front to back ratio. The proposed antenna is fabricated and its measured performance is in good agreement with simulation results. 相似文献
4.
An approximate method for the fast, accurate calculation of mutual admittance between CPW‐fed slots on electrically thin dielectric substrates is outlined. Results for typical broadside slots agree well with that of a full‐wave simulator, confirming that a free‐space homogeneous medium may be assumed to good effect for sufficiently thin substrates. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009. 相似文献
5.
In this article, a wideband planar magneto‐electric (ME) tapered slot antenna (TSA) with wide beamwidth both in the E‐plane and H‐plane is investigated. By simply etching slots on the basic TSA, which can function as a combination of magnetic dipole and electric dipole, stable unidirectional patterns with wide beamwidth are obtained. The metal ground plane is further modified to realize wide beamwidth across a wide frequency bandwidth. Moreover, a double‐layer structure is employed to suppress the cross polarization. The measured results show that the proposed antenna can achieve an impedance bandwidth of 51.7% (7.22‐12.25 GHz) with a stable gain of 2.3 dBi, and a pattern bandwidth of 43% (7.8‐12.2GHz) for more than 135° half‐power beamwidth. The measured front‐to‐back (F/B) ratio is more than 15 dB in the pattern bandwidth. 相似文献
6.
This paper presents a novel ultra‐wideband (UWB) antenna printed on a 70 μm thick flexible substrate. The proposed antenna consists of a hybrid‐shaped patch fed by coplanar waveguide (CPW). The ground planes on opposite sides of the feeding line have different height to improve antenna bandwidth. Simulation shows that the proposed antenna maintain wide bandwidth when changing its substrate's thickness and dielectric constant, as well as bending the antenna on a cylindrical foam. The proposed antenna is fabricated in laboratory with a simple and low‐cost wet printed circuit board (PCB) etching technique. Measured bandwidths cover 3.06 to 13.58, 2.8 to 13.55, and 3.1 to 12.8 GHz in cases of flat state and bent with radii of 20 and 10 mm, respectively. Measured radiation patterns show the antenna is omnidirectional in flat and bent cases. 相似文献
7.
R. Sujith S. Mridula D. Laila C. K. Aanandan K. Vasudevan P. Mohanan 《国际射频与微波计算机辅助工程杂志》2011,21(5):543-550
A compact coplanar waveguide (CPW)‐fed uniplanar antenna with harmonic suppression characteristics is presented. The above characteristics are achieved by properly modifying the ground plane and adjusting the signal strip of an open‐ended CPW‐fed transmission line. The simulated and experimental characteristics of the antenna are presented, compared, and discussed. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011. 相似文献
8.
A compact size of 40 × 40 mm2 ( λ0 × λ0 ) semi‐elliptical slotted ground structure (SESGS) directional ultra‐wideband (UWB) antenna is proposed for radar imaging applications. A vertical semi‐elliptical slot is inserted into ground and subsequently, an axis of semi‐ellipse is rotated diagonally (with 45°) in direction of the substrate. Axes of semi‐ellipse are optimized symmetrically around the circular patch to work antenna as a reflector. Furthermore, semi‐elliptical slot is rotated horizontally (with 90°) again to improve the impedance bandwidth. Proposed antenna achieves fractional bandwidth around 83% covering the UWB frequency range from 4.40 to 10.60 GHz (S11 < ?10 dB) having 4.5/6/7/8/9.3/10.2 GHz resonant frequencies. Also, antenna is capable to send low‐distortion Gaussian pulses with fidelity factor more than 95% in time‐domain. Measured gain and half power beam width (HPBW) are 6.1‐9.1 dBi and 44°‐29° in 4.40‐10.60 GHz band, respectively, which show an improvement of 1‐3 dBi in gain and half power beam‐width is reduced by 5°‐10° when compared with previously designed antennas. Experimental results show good agreement with CST simulation. 相似文献
9.
A broadband and compact coplanar waveguide (CPW) coupled‐fed metasurface (MS)‐based antenna for C‐band synthetic aperture radar (SAR) imaging application is proposed in this article, which is consisted of 16 uniform periodic square patches performed as radiators. The CPW feeding structure gives two following functions: (1) It excites an aperture coupling slot structure underneath the center of MS patch array. (2) It acts as a ground plane for the metasurface patch units. Different slots were investigated and eventually an hourglass‐shaped slot is applied to enhance bandwidth for imaging applications. A prototype with a dimension of 60 × 60 × 1.524 mm3 (1.1λ0 × 1.1λ0 × 0.03λ0) operating at the center frequency 5.5 GHz (f0) has been fabricated and measured to verify the design principle. This antenna has a measured impedance bandwidth of 12.4% from 5.14 to 5.82 GHz, a peak gain of 9.2 dBi and averaged gain of 7.2 dBi at broadside radiation. Microwave imaging experiments using the proposed antenna have been carried out and a good performance is achieved. 相似文献
10.
11.
Morteza Mohammadi Shirkolaei 《国际射频与微波计算机辅助工程杂志》2020,30(11)
In this letter, the design and fabrication of the linear microstrip array antenna by series fed are presented. The array antenna consists of 16 reflector slot‐strip‐foam‐inverted patch (RSSFIP) antennas. The gain and efficiency of the linear array antenna is 16.6 dBi and 61% at 10 GHz, respectively. The antenna has a bandwidth (BW) of 45% from 8.1 to 12.8 GHz (S11 < ?10 dB) and side lobe level (SLL) of ?25.6 dB across the BW of 19.2% from 9.4 to 10.4 GHz. These are achieved by using a microstrip series fed with defected ground structure (DGS) to feed the patch array antenna. Good agreement is achieved between measurement and simulation results. 相似文献
12.
A novel coplanar waveguide fed UWB antenna with quad notch band characteristics has been proposed in this work. The antenna layout is designed based on a combination of well‐known geometrical shapes: a half ellipse patch, rectangle, and triangle. The shape of the ground plane is partially tapered rectangular. The overall dimension of the antenna is 41.5 × 32 mm. The antenna uses three U‐shaped slots at the top surface to create three notched band characteristics. A split‐ring resonator is then introduced at the bottom surface of the antenna. With the integration of split‐ring resonator at the bottom surface, an additional notch band at 7.25 to 7.75 (6.7%) GHz is created in the antenna. The designed antenna has an operating impedance bandwidth (VSWR ≤2) ranges from 3.03 to 12.34 GHz except in quad frequency stop bands of 3.3 to 3.7 (11.4%), 5.15 to 5.35 (3.8%), 5.725 to 5.825 (1.7%), and 7.25 to 7.75 (6.7%) GHz. The proposed antennas are successfully designed, prototyped, and measured. The simulated and measured results are extensively studied and discussed. Correlation between the time‐domain transmitting antenna input signal and the received antenna output signal is calculated in order to ensure that the proposed antenna can be used in pulse‐communication systems. This antenna finds applications in medical imaging, military radar systems, and other common UWB applications. 相似文献
13.
This article presents the miniaturization of a planar half elliptical ultra‐wideband dipole. By simply placing a concaved arm in close proximity to the original structure, a 45% area reduction in terms of electrical wavelength can be achieved. The proposed antenna exhibits a wide measured return loss bandwidth of 2 to 9.9 GHz and omnidirectional radiation patterns across the band. The design features a footprint size of 41.5 × 41.5 mm2 and an electrical size of 0.28λ × 0.28λ at 2 GHz. Compared with some previously reported planar designs, the proposed antenna presents a more compact electrical dimension and better or comparable bandwidth. Critical geometric parameters of the structure, particularly the concaved arm, are investigated to understand the miniaturization and operating mechanism of the design. Satisfactory correlation between the simulation and measurement data is obtained. 相似文献
14.
A single‐fed circularly polarized square shaped wide slot antenna with modified ground plane and microstrip feed has been presented. The field in the slot is perturbed by introducing an antipodal strips section attached with a microstrip line to produce circular polarization in a wide band of frequencies. The antipodal strip section consists of a group of four strips of unequal length and separation. The presence of asymmetric perturbations in the slot is mainly responsible for exciting two orthogonal modes in the slot having equal magnitude and 90° phase difference which results in circular polarization. A wide bandwidth of 3.3 GHz (4.4 GHz‐7.7 GHz) has been achieved for an axial ratio value AR < 3 dB with the minimum axial ratio value being 0.3 dB. The impedance bandwidth for |S11| < ?10 dB ranges from 4.3 GHz to 8 GHz, and therefore covers most of the C‐band communication systems. The antenna exhibits stable radiation patterns throughout the circular polarization bandwidth with a gain around 6 dBi in entire operational bandwidth. A prototype of antenna was fabricated and measured. The antenna has a planar size 0.40λ0 × 0.40λ0 and thickness of 0.02λ0 where λ0 is the wavelength in free space at the lowest frequency. With its compact size and low profile, the antenna is a favorable choice for WLAN (5.15‐5.85 GHz) and a wide variety of C‐band wireless applications. 相似文献
15.
Sreejith M. Nair Shameena V.A Nijas C.M C.K. Aanandan K. Vasudevan P. Mohanan 《国际射频与微波计算机辅助工程杂志》2013,23(1):40-46
A high‐efficiency and high‐gain slotline fed directive dipole antenna is developed for microwave applications. The antenna offers an average gain of 7.9 dBi with a front to back ratio better than 20 dB and a cross polar level better than ?20 dB. Design equations of the antenna are developed and validated on different substrates. The simulation and experimental results show that the proposed antenna exhibits high gain and robust radiation patterns in the entire frequency band. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013. 相似文献
16.
Raed Abdulkareem Abdulhasan Rozlan Alias Khairun Nidzam Ramli Fauziahanim Che Seman Raed A. Abd‐Alhameed 《国际射频与微波计算机辅助工程杂志》2019,29(8)
In this article, a novel uniplanar ultra‐wideband (UWB) stop frequency selective surface (FSS) was miniaturized to maximize the gain of a compact UWB monopole antenna for microwave imaging applications. The single‐plane FSS unit cell size was only 0.095λ × 0.095λ for a lower‐operating frequency had been introduced, which was miniaturized by combining a square‐loop with a cross‐dipole on FR4 substrate. The proposed hexagonal antenna was printed on FR4 substrate with coplanar waveguide feed, which was further backed at 21.6 mm by 3 × 3 FSS array. The unit cell was modeled with an equivalent circuit, while the measured characteristics of fabricated FSS array and the antenna prototypes were validated with the simulation outcomes. The FSS displayed transmission magnitude below ?10 dB and linear reflection phase over the bandwidth of 2.6 to 11.1 GHz. The proposed antenna prototype achieved excellent gain improvement about 3.5 dBi, unidirectional radiation, and bandwidth of 3.8 to 10.6 GHz. Exceptional agreements were observed between the simulation and the measured outcomes. Hence, a new UWB baggage scanner system was developed to assess the short distance imaging of simulated small metallic objects in handbag model. The system based on the proposed antenna displayed a higher resolution image than the antenna without FSS. 相似文献
17.
一种宽带天线的研究与设计* 总被引:1,自引:0,他引:1
为了满足宽带通信的需求,利用U形单极子天线和两个U形寄生辐射元的方法,设计了一种共面波导馈电的宽带天线,其阻抗带宽达到85%。所设计的天线印刷在尺寸为20 mm×30 mm×1.6 mm、介电常数为265的聚四氟乙烯介质基板上。为了满足无线局域网(WLAN)和全球互联微波接入(WiMAX)的工作需要,抑制不需要的信号,在U形单极子辐射元之间插入一条调谐微带线,产生一个陷波特性,使所设计的天线满足WLAN、WiMAX和低端UWB通信需求。利用高频结构仿真软件HFSS对影响天线性能的主要参数进行仿真、分析和优化,得到天线的优化尺寸,并对优化的天线进行制造和测试。实验结果表明,该天线比传统微带贴片天线性能有了较大的提高,证明了利用共面波导馈电和寄生技术设计宽带天线的可行性和有效性。 相似文献
18.
A wideband circularly polarized printed antenna is proposed and fabricated, which employs monofilar spiral stubs and a slit in the asymmetrical ground plane which are fed by an inverted L‐shaped microstrip feedline. The CP operation is realized by embedding an inverted‐L shaped strip and modified ground plane and can be markedly improved by loading monofilar spiral stubs asymmetrically connected at the edge of the ground plane. After optimization, the measured results of the finally structure demonstrate that a 10‐dB bandwidth of 67.6% from 4.6 to 9.3 GHz and a 3‐dB axial‐ratio bandwidth (ARBW) for circular polarization (CP) of 60.1% from 5 to 9.3 GHz could be achieved which could completely cover the WLAN (5.725‐5.85 GHz) band. Therefore, the proposed antenna is suitable for circular polarization applications in C band. To explain the mechanism of broadband circular polarization operation, the analysis of magnetic fields distributions and a parametric study of the design are given. Compared to other recent works, a simpler structure, wider axial ratio and impedance bandwidths and a more compact size are the key features of the proposed antenna. 相似文献
19.
A W‐band low sidelobe level offset‐fed reflectarray antenna is designed, fabricated, and measured. Compared to conventional offset‐fed reflectarray antenna, the sidelobe level of proposed one is decreased significantly when the inclination angle of reflector is half of the incident angle of the feeding. At the same time, a large‐radiation‐area element is used to obtain low sidelobe level for the offset‐fed reflectarray antenna because of its large radiating element area and low specular reflection. A 52 mm× 180 mm offset‐fed reflector antenna have been designed and measured to verify the availability. From 90 to 96 GHz, measured results show that a maximum gain of 36dBi at 93 GHz, and the peak sidelobe level of 18dBc can be obtained with the proposed architecture. 相似文献
20.
A novel method based on model predictive control (MPC) is presented for synthesis and optimization of a wide band reflector antenna with cosecant squared and flat‐topped radiation patterns. The proposed system is a doubly curved reflector antenna with nonlinear dynamic equation. This article investigates design and optimization of a double ridged horn reflector antenna operating within the frequency range of 8 to 18 GHz. In order to synthesize the proposed reflector antenna, MPC is used to achieve the desired radiation cosecant pattern. This method utilizes system model and tries to find the best control effort for minimizing the cost function by predicting the future behavior. The system differential equation is comprised of first and second order derivatives, so MPC can be a good solution for synthesis of a doubly reflector antenna. MPC optimizer operates based on state space model, so the proposed system is linearized in the operating range. Maximum error, the average error and side lobe level of this method for the radiation pattern of the proposed wideband antenna respectively are 1.4, 0.9, and ?20 dB. Simulation results of the radiation pattern in CST and HFSS software show that the proposed reflector antenna can be used in broadband surveillance radar systems. 相似文献