首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Spherical and well‐dispersed silica/poly[styrene‐co‐(acrylic acid)] (SiO2/PSA) core–shell particles have been synthesized using an improved phase‐inversion process. The resulting particles were successfully used as supports for polyolefin catalysts in the production of polyethylene with broad molecular weight distribution. Through the vapor phase, instead of the liquid phase in the traditional process, a non‐solvent was introduced into a mixture of micrometer‐sized SiO2 and PSA solution. The core–shell structure of the resulting SiO2/PSA microspheres was confirmed using optical microscopy, scanning electron microscopy, Fourier transfer infrared spectrometry, thermogravimetric analysis and measurement of nitrogen adsorption/desorption isotherms. In order to avoid agglomeration of particles and to obtain a good dispersion of the SiO2/PSA core–shell microspheres, the non‐solvent was added slowly. As the concentration of PSA solution increased, the surface morphology of the core–shell particles became looser and more irregular. However, the surface area and the pore volume remained the same under varying PSA concentrations. The SiO2/PSA core‐shell microspheres obtained were used as a catalyst carrier system in which the core supported (n‐BuCp)2ZrCl2 and the shell supported TiCl4. Ethylene/1‐hexene copolymerization results indicated that the zirconocene and titanium‐based Ziegler–Natta catalysts were compatible in the hybrid catalyst, showing high activities. The resulting polyethylene had high molecular weight and broad molecular weight distribution. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
Me2Si(C5Me4)(NtBu)TiCl2, (nBuCp)2ZrCl2, and Me2Si(C5Me4)(NtBu)TiCl2/(nBuCp)2ZrCl2 catalyst systems were successfully immobilized on silica and applied to ethylene/hexene copolymerization. In the presence of 20 mL of hexene and 25 mg of butyloctyl magnesium in 400 mL of isobutane at 40 bar of ethylene, Me2Si(C5Me4)(NtBu)TiCl2 immobilized catalyst afforded poly(ethylene‐co‐hexene) with high molecular weight ([η] = 12.41) and high comonomer content (%C6 = 2.8%), while (nBuCp)2ZrCl2‐immobilized catalyst afforded polymers with relatively low molecular weight ([η] = 2.58) with low comonomer content (%C6 = 0.9%). Immobilized Me2Si(C5Me4)(NtBu)TiCl2/(nBuCp)2ZrCl2 hybrid catalyst exhibited high and stable polymerization activity with time, affording polymers with pseudo‐bimodal molecular weight distribution and clear inverse comonomer distribution (low comonomer content for low molecular weight polymer fraction and vice versa). The polymerization characteristics and rate profiles suggest that individual catalysts in the hybrid catalyst system are independent of each other. POLYM. ENG. SCI., 47:131–139, 2007. © 2007 Society of Plastics Engineers  相似文献   

3.
Hybrid titanium catalysts supported on silica/poly(styrene‐co‐acrylic acid) (SiO2/PSA) core‐shell carrier were prepared and studied. The resulting catalysts were characterized by Fourier transform infrared (FTIR) spectroscopy, laser scattering particle analyzer and scanning electronic microscope (SEM). The hybrid catalyst (TiCl3/MgCl2/THF/SiO2·TiCl4/MgCl2/PSA) showed core‐shell structure and the thickness of the PSA layer in the two different hybrid catalysts was 2.0 μm and 5.0 μm, respectively. The activities of the hybrid catalysts were comparable to the conventional titanium‐based Ziegler‐Natta catalyst (TiCl3/MgCl2/THF/SiO2). The hybrid catalysts showed lower initial polymerization rate and longer polymerization life time compared with TiCl3/MgCl2/THF/SiO2. The activities of the hybrid catalysts were enhanced firstly and then decreased with increasing P/P. Higher molecular weight and broader molecular weight distribution (MWD) of polyethylene produced by the core‐shell hybrid catalysts were obtained. Particularly, the hybrid catalyst with a PSA layer of 5.0 μm obtained the longest polymerization life time with the highest activity (2071 kg PE mol?1 Ti h?1) and the resulting polyethylene had the broadest MWD (polydispersity index = 11.5) under our experimental conditions. The morphology of the polyethylene particles produced by the hybrid catalysts was spherical, but with irregular subparticles due to the influence of PSA layer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Metallocenes are a modern innovation in polyolefin catalysis research. Therefore, two supported metallocene catalysts—silica/MAO/(nBuCp)2ZrCl2 (Catalyst 1) and silica/nBuSnCl3/MAO/(nBuCp)2ZrCl2 (Catalyst 2), where MAO is methylaluminoxane—were synthesized, and subsequently used to prepare, without separate feeding of MAO, ethylene–1‐hexene Copolymer 1 and Copolymer 2, respectively. Fouling‐free copolymerization, catalyst kinetic stability and production of free‐flowing polymer particles (replicating the catalyst particle size distribution) confirmed the occurrence of heterogeneous catalysis. The catalyst active center distribution was modeled by deconvoluting the measured molecular weight distribution and copolymer composition distribution. Five different active center types were predicted for each catalyst, which was corroborated by successive self‐nucleation and annealing experiments, as well as by an extended X‐ray absorption fine structure spectroscopy report published in the literature. Hence, metallocenes impregnated particularly on an MAO‐pretreated support may be rightly envisioned to comprise an ensemble of isolated single sites that have varying coordination environments. This study shows how the active center distribution and the design of supported MAO anions affect copolymerization activity, polymerization mechanism and the resulting polymer microstructures. Catalyst 2 showed less copolymerization activity than Catalyst 1. Strong chain transfer and positive co‐monomer effect—both by 1‐hexene—were common. Each copolymer demonstrated vinyl, vinylidene and trans‐vinylene end groups, and compositional heterogeneity. All these findings were explained, as appropriate, considering the modeled active center distribution, MAO cage structure repeat units, proposed catalyst surface chemistry, segregation effects and the literature that concerns and supports this study. While doing so, new insights were obtained. Additionally, future research, along the direction of the present work, is recommended. © 2013 Society of Chemical Industry  相似文献   

5.
Ultrahigh‐molecular‐weight polyethylene (UHMWPE)/polar polyethylene (PE) composites were blended in one nascent particle by in situ polymerization with a hybrid catalyst. Polystyrene‐coated SiO2 particles were used to support the hybrid catalyst. Fe(acac)3/2,6‐bis[1‐(2‐isopropylanilinoethyl)] was supported on SiO2 for the synthesis of UHMWPE, whereas [PhN?C(CH3)CH?C(Ph)O]VCl2 was immobilized on a polystyrene layer to prepare a copolymer of ethylene and 10‐undecen‐1‐ol (polar PE). Importantly, the core part of the supports (the polystyrene layer) exhibited pronounced transfer resistance to 10‐undecen‐1‐ol; this provided an opportunity to keep the inside iron active sites away from the poisoning of 10‐undecen‐1‐ol. Therefore, UHMWPE was simultaneously synthesized with polar PE by in situ polymerization. Interestingly, the morphological results show that UHMWPE and the polar PE were successfully blended in one nascent polymer. This improved the miscibility of the composites, where most of the chains were difficult to crystallize because of the strong interactions between the PE chains and polar chains. The blends showed an extremely low crystallinity, that is, 9.9%. Finally, the hydrophilic properties of the polymer composites were examined. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46652.  相似文献   

6.
采用溶胶-凝胶法,将苯乙烯-丙烯酸(PSA)共聚物包覆在以硅胶/MgCl2为载体的TiCl3催化剂上,负载(n-BuCp)2ZrCl2后制得Ziegler-Natta/茂金属复合催化剂。实验在同一反应釜中进行两段反应模拟双釜串联聚合工艺。在第一段反应中制备高分子量高支化度的乙烯/1-己烯共聚物,在第二段反应中,制备低分子量低支化度的聚合物。淤浆聚合结果表明,所得聚乙烯的熔融流动比(MI21.6/MI2.16)较宽,达到79,分子量分布达到18.6。两段反应得到的聚乙烯共混物的结晶度和熔融温度介于第一段、第二段单独反应时所得产物的结晶度和熔融温度之间,且DSC曲线具有单一的熔融峰,说明该两段反应法制备的聚乙烯共混物具有良好的共结晶行为。动力学研究同时表明,苯乙烯-丙烯酸共聚物的引入,使得催化剂的活性缓慢释放,活性持续时间明显长于负载于无机载体的催化剂,有利于灵活地调节各段反应的停留时间。  相似文献   

7.
This study examined the effect of the ultradrawing behavior of gel film specimens of ultrahigh‐molecular‐weight polyethylene (UHMWPE) and UHMWPE/low‐molecular‐weight polyethylene (LMWPE) blends on their physical properties. The concentration of a gel film approximated its critical concentration at a fixed drawing temperature; its achievable draw ratio was higher than that of other blend specimens with various concentrations. Noticeably, when about 5 wt % LMWPE was added to a UHMWPE/LMWPE gel film specimen, the achievable draw ratio of the gel film increased, and this contributed to an apparent promoting effect on its anticreeping properties and thermal stability. Therefore, when ULB?0.9 was drawn to a draw ratio of 300, the anticreeping behavior was improved to less than 0.026%/day. Moreover, with respect to the thermal stability, when the same specimen was drawn to a draw ratio of 300, the retention capability of its storage modulus could resist a high temperature of 150°C, which was obviously much higher than the temperature of an undrawn gel film specimen (70°C). To study these interesting behaviors further, this study systematically investigated the gel solution viscosities, anticreeping properties, dynamic mechanical properties, thermal properties, molecular orientations, and mechanical properties of undrawn and drawn UHMWPE/LMWPE gel film specimens. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

8.
Heterogeneous metallocene catalysts were prepared by incipient wetness impregnation of AlSBA‐15 (Si/Al = 4.8, 15, 30, 60, and ∞) mesostructured materials with (nBuCp)2ZrCl2/MAO. For comparative purposes commercial silica and silica–alumina (Si/Al = 4.8) supports were also impregnated with the MAO/metallocene catalytic system. A combination of X‐ray powder diffraction, nitrogen adsorption–desorption isotherms at 77 K, transmission electron microscopy, ICP‐atomic emission spectroscopy, and UV–vis spectroscopic data, were used to characterize the supports and the heterogeneous catalysts. Ethylene polymerizations were carried out in a schlenk tube at 70 °C and 1.2 bar of ethylene pressure. The polyethylene obtained was characterized by GPC, DSC, and SEM. Catalysts prepared with mesostructured SBA‐15 supports exhibited better catalytic performance than those supported on amorphous silica and silica–alumina. In general, higher ethylene polymerization activity was achieved if (nBuCp)2 ZrCl2/MAO catalytic system was heterogenized using supports with lower pore size in the range of the mesopores and lower Si/Al ratio. All catalysts produced high‐density polyethylene, with high crystallinity values and fibrous morphology when SBA‐15 mesostructured materials were used as supports. POLYM. ENG SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

9.
The reactor blends (RBs) with bimodal molecular weight distribution on the base of ultrahigh molecular weight polyethylene (UHMWPE) and low molecular weight random ethylene/1‐hexene copolymers (CEH) were synthesized by two‐step processes including ethylene polymerization followed by ethylene/1‐hexene copolymerization over rac‐(CH3)2Si(Ind)2ZrCl2/methylaluminoxane catalyst. The four series of blends differed in a composition of copolymer fraction that was varied in a wide range (from 3.0 to 37.0 mol % of 1‐hexene). The differential scanning calorimetric study shows the double melting behavior of the net semicrystalline CEHs, which can be attributed to intramolecular heterogeneity in chain branch distribution. The introduction of CEHs leads to the modification of nascent RB crystalline and amorphous phases. Physical and tensile properties as well as melting indexes of the materials depend not only on the percentage of copolymer fraction that varied from 6.9 to 35.8 wt % but also on its composition. The increase of copolymer fraction with high content of 1‐hexene (≥11.0 mol %) in the blends leads to the change of the character of stress–strain curves; the materials behave as elastomers. Controlled regulation of copolymer fraction characteristics in the synthesis yields RBs combining the enough high strength, good plastic properties with enhanced melting indexes as compared with the net UHMWPE. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40151.  相似文献   

10.
A nano-sized silica supported Cp2ZrCl2/MAO catalyst was used to catalyze the copolymerization of ethylene/1-hexene and ethylene/1-octene to produce linear low-density polyethylene (LLDPE) in a batch reactor. Under identical reaction conditions, the nano-sized catalyst exhibited significantly higher polymerization activity, and produced copolymer with greater molecular weight and smaller polydispersity index than a corresponding micro-sized catalyst, which was ascribed to the much lower internal diffusion resistance of the nano-sized catalyst. Copolymer density decreased with the increase of polymerization temperature, probably due to the decrease of reactivity ratio r 1 and ethylene solubility with increasing temperature. Polymerization activity of the nano-sized catalyst increased rapidly with increasing comonomer concentration. Ethylene/1-octene exhibited higher polymerization activity and had a stronger comonomer effect than ethylene/1-hexene.  相似文献   

11.
This paper reviews a new family of olefin polymerization catalysts. The catalysts, named FI catalysts, are based on non‐symmetrical phenoxyimine chelate ligands combined with group 4 transition metals and were developed using “ligand‐oriented catalyst design”. FI catalysts display very high ethylene polymerization activities under mild conditions. The highest activity exhibited by a zirconium FI catalyst reached an astonishing catalyst turnover frequency (TOF) of 64,900 s –1 atm –1, which is two orders of magnitude greater than that seen with Cp2ZrCl2 under the same conditions. In addition, titanium FI catalysts with fluorinated ligands promote exceptionally high‐speed, living ethylene polymerization and can produce monodisperse high molecular weight polyethylenes (Mw/Mn<1.2, max. Mn>400,000) at 50 °C. The maximum TOF, 24,500 min –1 atm –1, is three orders of magnitude greater than those for known living ethylene polymerization catalysts. Moreover, the fluorinated FI catalysts promote stereospecific room‐temperature living polymerization of propylene to provide highly syndiotactic monodisperse polypropylene (max. [rr] 98%). The versatility of the FI catalysts allows for the creation of new polymers which are difficult or impossible to prepare using group 4 metallocene catalysts. For example, it is possible to prepare low molecular weight (Mv∼103) polyethylene or poly(ethylene‐co‐propylene) with olefinic end groups, ultra‐high molecular weight polyethylene or poly(ethylene‐co‐propylene), high molecular weight poly(1‐hexene) with atactic structures including frequent regioerrors, monodisperse poly(ethylene‐co‐propylene) with various propylene contents, and a number of polyolefin block copolymers [e.g., polyethylene‐b‐poly(ethylene‐co‐propylene), syndiotactic polypropylene‐b‐poly(ethylene‐co‐propylene), polyethylene‐b‐poly(ethylene‐co‐propylene)‐b‐syndiotactic polypropylene]. These unique polymers are anticipated to possess novel material properties and uses.  相似文献   

12.
Methylaluminoxane (MAO)/(nBuCp)2ZrCl2 metallocene catalytic system was supported on silica and silica‐alumina. The Zr loading was varied between 0.2–0.4 wt %, and the MAO amount was calculated to get (AlMAO/Zr) molar ratios between 100 and 200, suitable for the industrial ethylene polymerization of supported metallocene catalysts. Catalytic activity was statistically analyzed through the response surface method. Within the ranges studied, it was found that Zr loading had a negative effect on polymerization activity, which increases with the (AlMAO/Zr) molar ratio. Catalysts supported on silica‐alumina are more active than those supported on silica, needing less MAO to reach similar productivity, which constitutes an important advantage from an economical and environmental point of view. Supported catalysts were characterized by ICP‐AES, SEM‐energy‐dispersive X‐ray spectrometer, and UV‐Vis spectroscopy, whereas polyethylenes were characterized by GPC and DSC. Molecular weight and crystallinity are not influenced by Zr loading or (AlMAO/Zr) ratio, in the range studied. In general, silica‐supported MAO/(nBuCp)2ZrCl2 catalysts give polyethylenes with higher molecular weight and polydispersity but lower crystallinity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The judicious design of methylaluminoxane (MAO) anions expands the scope for developing industrial metallocene catalysts. Therefore, the effects of MAO anion design on the backbone structure, melt behavior, and crystallization of ethylene?4‐methyl‐1‐pentene (E?4M1P) copolymer were investigated. Ethylene was homopolymerized, as well as copolymerized with 4M1P, using (1) MAO anion A (unsupported [MAOCl2]?) premixed with dehydroxylated silica, (nBuCp)2ZrCl2, and Me2SiCl2; and (2) MAO anion B (Si?O?Me2Si?[MAOCl2]?) supported with (nBuCp)2ZrCl2 on Me2SiCl2‐functionalized silica. Unsupported Me2SiCl2, opposite to the supported analogue, acted as a co‐chain transfer agent with 4M1P. The modeling of polyethylene melting and crystallization kinetics, including critical crystallite stability, produced insightful results. This study especially illustrates how branched polyethylene can be prepared from ethylene alone using particularly one metallocene‐MAO ion pair, and how a compound, that functionalizes silica as well as terminates the chain, can synthesize ethylene?α‐olefin copolymers with novel structures. Hence, it unfolds prospective future research niches in polyethyne systhesis. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1688–1706, 2016  相似文献   

14.
This work reports the synthesis of a series of reactor blends of linear and branched polyethylene materials using a combination of [1,4‐bis(2,6‐diisopropylphenyl) acenaphthene diimine nickel(II) dibromide] ( 1 )/MMAO, known as an active catalyst for the production of branched polyethylene, and [rac‐ethylenebis(indenyl) zirconium dichloride] ( 2 )/MMAO, which is active for the production of linear polyethylene. The polymerization runs were performed at various levels of temperature, pressure, and catalyst 2 molar fractions. At 5°C, there was very low influence of catalyst 2 molar fraction on the overall catalyst activity. However, at 30°C and 50°C, the overall catalyst activity increased linearly with catalyst 2 molar fraction. The same linear dependency was also found for the polymerization reactions carried out at 60°C and 100°C. At various levels of temperature and ethylene pressure, higher melting temperature and crystallinity were observed with an increase in catalyst 2 molar fraction. At 60°C and 100 psig, the DSC thermograms of the polymers produced with 1 / 2 /MMAO exhibited two distinct peaks with melting temperatures closely corresponding to the melting temperatures of the polymers produced with the individual catalysts, 1 /MMAO and 2 /MMAO. The GPCV analysis of all polyethylene samples showed monomodal molecular weight distributions with low polydispersities. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2212–2217, 2005  相似文献   

15.
A series of hybrid supported catalysts were prepared by combining (iBuCp)2ZrCl2 and {TpMs*}TiCl3 complex (TpMs* = HB(3‐mesityl‐pyrazolyl)2(5‐mesityl‐pyrazolyl)?) sequentially grafted onto MAO (methylaluminoxane)‐modified silica according to a Plackett Burmann 23 design. Supported catalysts were prepared taking into account the immobilization order, silica pretreatment temperature, and grafting temperature. Grafted metal content was comparatively determined by Rutherford backscattering spectrometry (RBS), X‐ray photoelectronic spectroscopy (XPS), and inductively coupled plasma–optical emission spectroscopy (ICP–OES). The resulting catalysts were evaluated in terms of catalyst activity and polymer properties. According to RBS measurements, grafted metal content remained comprised between 0.1 and 0.5 wt % Zr/SiO2 and 0.1 and 0.3 wt % Ti/SiO2 depending on the immobilization order and on silica pretreatment temperature. All the systems were shown to be active in ethylene polymerization having external MAO as cocatalyst. Catalyst activity seemed to be governed by the zirconocene species, influenced slightly by Ti ones. Resulting polymers were characterized by DSC and GPC. The polyethylenes mostly presented higher molecular weight than those produced by homogeneous catalysts or by zirconocene grafted on bare or on MAO‐modified silica. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

16.
A mechanistic analysis of propylene polymerization was performed, in which the catalyst system was Me2Si(R1Ind)2ZrCl2/SMAO/AlR32 (in situ supported catalyst onto MAO-modified silica) or Me2Si(R1Ind)2ZrCl2/MAO (homogeneous), where R1 = H or CH3, cocatalyzed by AlR32 = TEA (triethylaluminum), IPRA (isoprenylaluminum), or TIBA (triisobutylaluminum). The catalyst activity of the homogeneous system Me2Si(2-Me-Ind)2ZrCl2/MAO was almost 8 times higher than that observed for Me2Si(Ind)2ZrCl2/MAO (38 vs 4.6 kg PP/g cat h), while the polypropylene molar mass was 3 times higher (Mw: 93 vs 34 kg/mol). Conversely, the in situ supported systems Me2Si(Ind)2ZrCl2/SMAO/AlR3 and Me2Si(2-Me-Ind)2ZrCl2/SMAO/AlR3 showed similar activities, ranging from 0.2 to 1.5 kg PP/g cat h. The molar mass of the resulting polymers prepared using the in situ procedure was dependent on the AlR3 nature and on the Al/Zr ratio. Generally, the heterogeneous catalysts produced PP with higher molecular weights than that obtained with homogeneous ones. The influence of the alkylaluminum, used as the cocatalyst, on the chain-transfer termination reaction to the alkyl compound was evident from the activity and the molecular weight of the produced polymers.  相似文献   

17.
Imidovanadium complexes with cyclopentadienyl (Cp) ligands—(Cp)V(?NC6H4Me‐4)Cl2 (1), (Cp)V(?NtBu)Cl2 (2), and (tBuCp)V(?NtBu)Cl2 (3; tBuCp = tert‐butylcyclopentadienyl)—were synthesized through the reaction of imidovanadium trichloride with (trimethylsilyl)cyclopentadiene derivatives. The molecular structure of 3 was determined by X‐ray crystallography. The monocyclopentadienyl complex 1 exhibited moderate activity in combination with methylaluminoxane [MAO; 10.3 kg of polyethylene (mol of V)?1 h?1 atm?1], whereas similar complexes with bulky tBu groups, 2 and 3, were less active. (2‐Methyl‐8‐quinolinolato)imidovanadium complexes, V(?NR)(O ?N)Cl2 (R = C6H3iPr2‐2,6 (4) or n‐hexyl (5), O ?N = 2‐methyl‐8‐quinolinolato), were obtained from the reaction of imidovanadium trichloride with 2‐methyl‐8‐quinolinol. Upon activation with modified MAO, complex 4 showed moderate activities for the polymerization of ethylene at room temperature. The complex 5/MAO system also exhibited moderate activity at 0°C. The polyethylenes obtained by these complexes had considerably high melting points, which indicated the formation of linear polyethylene. Moreover, the 5/dried MAO system showed propylene polymerization activities and produced polymers with considerably high molecular weights and narrow molecular weight distributions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1008–1015, 2005  相似文献   

18.
Linear low‐density polyethylene (LLDPE) is produced in a reactor from single ethylene feed by combining Ti(OBu)4/AlEt3, capable of forming α‐olefins (predominantly 1‐butene), with SiO2‐supported Et(Ind)2ZrCl2 (denoted MAO/SiO2/Et(Ind)2ZrCl2), which is able to copolymerize ethylene and 1‐butene in situ with little interference in the dual‐functional catalytic system. The two catalysts in the dual‐functional catalytic system match well because of the employment of triethylaluminum (AlEt3) as the single cocatalyst to both Ti(OBu)4 and MAO/SiO2/Et(Ind)2ZrCl2, exhibiting high polymerization activity and improved properties of the obtained polyethylene. There is a noticeable increment in catalytic activity when the amount of Ti(OBu)4 in the reactor increases and 1‐butene can be incorporated by about 6.51 mol % in the backbone of polyethylene chains at the highest Ti(OBu)4 concentration in the feed. The molecular weights (Mw), melting points, and crystallinity of the LLDPE descend as the amount of Ti(OBu)4 decreases, which is attributed mainly to chain termination and high branching degree, while the molecular weight distribution remains within a narrow range as in the case of metallocene catalysts. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2451–2455, 2004  相似文献   

19.
Ultra-high molecular weight polyethylene (UHMWPE) possesses advantages over conventional polyolefins such as excellent mechanical properties. Recent progresses in transition-metal complexes have led to the discovery of highly active catalysts for the preparation of UHMWPE. In this study, Ti with bis(phenoxy-imine) ligand (FI catalyst) and Me2Si(C5Me4)(N-tBu)TiCl2 (CGC) were immobilized on silica and tested for the preparation of UHMWPE. Results revealed that soluble FI catalyst and CGC can produce polyethylene having relatively high molecular weight above 106 g/mol, which also can be successfully immobilized on carriers for better adaptability to production processes.  相似文献   

20.
A Ziegler-Natta catalyst was modified with a metallocene catalyst and its polymerization behavior was examined. In the modification of the TiCl4 catalyst supported on MgCl2 (MgCl2-Ti) with a rac-ethylenebis(indenyl)zirconium dichloride (rac-Et(Ind)2ZrCl2, EIZ) catalyst, the obtained catalyst showed relatively low activity but produced high isotactic polypropylene. These results suggest that the EIZ catalyst might block a non-isospecific site and modify a Ti-active site to form highly isospecific sites. To combine two catalysts in olefin polymerization by catalyst transitioning methods, the sequential addition of catalysts and a co-catalyst was tried. It was found that an alkylaluminum like triethylaluminum (TEA) can act as a deactivation agent for a metallocene catalyst. In ethylene polymerization, catalyst transitioning was accomplished with the sequential addition of bis(cyclopentadienyl)zirconium dichloride (Cp2ZrCl2)/methylaluminoxane (MAO), TEA, and a titanium tetrachloride/vanadium oxytrichloride (TiCl4/VOCl3, Ti-V) catalyst. Using this method, it was possible to control the molecular weight distribution (MWD) of polyethylene in a bimodal pattern. In the presence of hydrogen, polyethylene with a very broad MWD was obtained due to a different hydrogen effect on the Cp2ZrCl2 and Ti-V catalyst. The obtained polyethylene with a broader MWD exhibited more apparent shear thinning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号