共查询到20条相似文献,搜索用时 0 毫秒
1.
Multiwalled carbon nanotube/polycaprolactone nanocomposites (MWNT/PCL) were prepared by in situ polymerization, whereby as‐received MWNTs (P‐MWNTs) and purified MWNTs (A‐MWNTs) were used as reinforcing materials. The A‐MWNTs were purified by nitric acid treatment, which introduced the carboxyl groups (COOH) on the MWNT. The micrographs of the fractured surfaces of the nanocomposites showed that the A‐MWNTs in A‐MWNT/PCL were better dispersed than P‐MWNTs in PCL matrix (P‐MWNT/PCL). Percolation thresholds of the P‐MWNT/PCL and A‐MWNT/PCL, which were studied by rheological properties, were found at ~2 wt % of the MWNT. The conductivity of the P‐MWNT/PCL was between 10?1 and 10?2 S/cm by loading of 2 wt % of MWNT although that of the A‐MWNT/PCL reached ~10?2 S/cm by loading of 7 wt % of MWNT. The conductivity of the P‐MWNT/PCL was higher than that of the A‐MWNT/PCL at the entire range of the studied MWNT loading, which might be due to the destruction of π‐network of the MWNT by acid treatment, although the A‐MWNT/PCL was better dispersed than the P‐MWNT/PCL. The amount of the MWNT at which the conductivity of the nanocomposite started to increase was strongly correlated with the percolation threshold. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1957–1963, 2007 相似文献
2.
In this work, electrical conductivity and thermo‐mechanical properties have been measured for carbon nanotube reinforced epoxy matrix composites. These nanocomposites consisted of two types of nanofillers, single walled carbon nanotubes (SW‐CNT) and electrical grade carbon nanotubes (XD‐CNT). The influence of the type of nanotubes and their corresponding loading weight fraction on the microstructure and the resulting electrical and mechanical properties of the nanocomposites have been investigated. The electrical conductivity of the nanocomposites showed a significantly high, about seven orders of magnitude, improvement at very low loading weight fractions of nanotubes in both types of nanocomposites. The percolation threshold in nanocomposites with SW‐CNT fillers was found to be around 0.015 wt % and that with XD‐CNT fillers around 0.0225 wt %. Transmission optical microscopy of the nanocomposites revealed some differences in the microstructure of the two types of nanocomposites which can be related to the variation in the percolation thresholds of these nanocomposites. The mechanical properties (storage modulus and loss modulus) and the glass transition temperature have not been compromised with the addition of fillers compared with significant enhancement of electrical properties. The main significance of these results is that XD‐CNTs can be used as a cost effective nanofiller for electrical applications of epoxy based nanocomposites at a fraction of SW‐CNT cost. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
3.
Stéphane Bredeau Sophie Peeterbroeck Daniel Bonduel Michaël Alexandre Philippe Dubois 《Polymer International》2008,57(4):547-553
Since their discovery at the beginning of the 1990s, carbon nanotubes (CNTs) have been the focus of considerable research by both academia and industry due to their remarkable and unique electronic and mechanical properties. Among numerous potential applications of CNTs, their use as reinforcing materials for polymers has recently received considerable attention since their exceptional mechanical properties, combined with their low density, offer tremendous opportunities for the development of fundamentally new material systems. However, the key challenge remains to reach a high level of nanoparticle dissociation (i.e. to break down the cohesion of aggregated CNTs) as well as a fine dispersion upon melt blending within the selected matrices. Therefore, this contribution aims at reviewing the exceptional efficiency of CNT coating by a thin layer of polymer as obtained by an in situ polymerization process catalysed directly from the nanofiller surface, known as the ‘polymerization‐filling technique’. This process allows for complete destructuring of the native filler aggregates. Interestingly enough, such surface‐coated carbon nanotubes can be added as ‘masterbatch’ in commercial polymeric matrices leading to the production of polymer nanocomposites displaying much better thermomechanical, flame retardant and electrical conductive properties even at very low filler loading. Copyright © 2007 Society of Chemical Industry 相似文献
4.
Toluene 2, 4‐diisocyanate (TDI) functionalized multiwalled carbon nanotubes (MWNTs‐NCO) were used to prepare monomer casting polyamide 6 (MCPA6)/MWNTs nanocomposites via in situ anionic ring‐opening polymerization (AROP). Isocyanate groups of MWNTs‐NCO could serve as AROP activators of ?‐caprolactam (CL) in the in situ polymerization. Fourier transform infrared (FTIR) showed that a graft copolymer of PA6 and MWNTs was formed in the in situ polymerization. MWNTs‐PA6 covalent bonds of the graft copolymer constituted a strong type of interfacial interaction in the nanocomposites and increased the compatibility of MWNTs and MCPA6 matrix. The nanocomposites were characterized for the morphology, mechanical, crystallization, and thermal properties through field emission transmission electron microscopy (FETEM), tensile testing, differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). FETEM analysis showed that MWNTs were homogeneously dispersed in MCPA6 matrix. The initial tensile strengths and tensile modulus of the nanocomposite with 1.5 wt % loading of MWNTs were enhanced by about 16 and 13%, respectively, compared with the corresponding values for neat MCPA6. DSC analysis indicated that the crystallization temperature of the nanocomposites was increased by 8°C by adding 1.5 wt % MWNTs compared with pure MCPA6. Besides, it was found that the thermal stability of MCPA6 was improved by the addition of the MWNTs. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
5.
New thermally stable conducting materials can be obtained by dispersing conducting carbon black into poly(4,4′‐diphenylether‐1,3,4‐oxadiazole) (POD–DPE) solution in NMP. The blend preparation process resulted in quite good dispersed composite and a relatively low percolation threshold (around 5 wt % of CB). The effect of the compressive stress on the resistivity of composite has been evaluated. The resistivity decreases continuously as the applied pressure is increased. In addition to the electrical conductivity, the presence of carbon black resulted in higher thermally stable materials. The thermal stability, electrical conductivity, and pressure‐sensible characteristics make this conducting material a good candidate for application in manufacture of pressure sensors for high temperature ambient. This material shows a typical semiconductor behavior, characterized by an increase of conductivity with the temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1631–1637, 2004 相似文献
6.
In this study, we prepared nanocomposites comprising multiwalled carbon nanotubes (MWCNTs) and polybenzoxazine (PBZ). The MWCNTs were purified through microwave digestion to remove most of the amorphous carbon and metal impurities. After purification, MWCNTs were treated with H2SO4/HNO3 (3 : 1) to introduce hydroxyl and carboxyl groups onto their surfaces. Raman spectroscopy revealed the percentage of nanotube content improved after prolonged microwave treatment, as evidenced by the decrease in the ratio of the D (1328 cm?1) and G (1583 cm?1) bands. For the untreated MWCNTs, the ID/IG ratio was 0.56. After microwave treatment for 40 min, the value decreased to 0.29, indicating that the percentage of nanotube content improved. Dynamic mechanical analyses (DMAs) revealed that the storage moduli and the Tgs of the MWCNTs/PBZ nanocomposites were higher than that of the pristine PBZ. This is due to the nanometer‐scale MWCNTs restricting the motion of the macromolecular chains in the nanocomposites. Transmission electron microscopy (TEM) image revealed that the MWCNTs were well dispersed within the PBZ matrix on the nanoscale when the MWCNT content was less than 2.0 phr. The coefficient of thermal expansion (CTE) of the nanocomposites decreased on increasing the MWCNTs content. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
7.
Sheng‐Yen Wu Yuan‐Li Huang Chen‐Chi M Ma Siu‐Ming Yuen Chih‐Chun Teng Shin‐Yi Yang Chorng H. Twu 《Polymer International》2012,61(7):1084-1093
A series of polyimide‐based nanocomposites containing polyimide‐grafted multi‐walled carbon nanotubes (PI‐g MWCNTs) and silane‐modified ceramic (aluminium nitride (AlN)) were prepared. The mechanical, thermal and electrical properties of hybrid PI‐g MWCNT/AlN/polyetherimide nanocomposites were investigated. After polyimide grafting modification, the PI‐g MWCNTs showed good dispersion and wettability in the polyetherimide matrix and imparted excellent mechanical, electrical and thermal properties. The utilization of the hybrid filler was found to be effective in increasing the thermal conductivity of the composites due to the enhanced connectivity due to the high‐aspect‐ratio MWCNT filler. The use of spherical AlN filler and PI‐g MWCNT filler resulted in composite materials with enhanced thermal conductivity and low coefficient of thermal expansion. Results indicated that the hybrid PI‐g MWCNT and AlN fillers incorporated into the polyetherimide matrix enhanced significantly the thermal stability, thermal conductivity and mechanical properties of the matrix. Copyright © 2012 Society of Chemical Industry 相似文献
8.
Qing‐Yuan Tang Yan‐Cheong Chan Ning‐Bew Wong Rebecca Cheung 《Polymer International》2010,59(9):1240-1245
The dispersion and stability of carbon nanotubes (CNTs) inside a polymer matrix, especially with a high CNT content, are still big challenges. Moreover, the interaction between CNTs and the polymer matrix should be strong enough to improve the mechanical properties. The efficient dispersion of CNTs is essential for the formation of a uniform distribution of a CNT network in a polymer composite. Polyimide/multiwall CNT nanocomposites were synthesized by in situ polymerization with the aid of a surfactant. A Fourier transform infrared spectroscopy study proved that the surfactant did not hamper the polymerization of the polyimide. The microstructure, storage modulus and electrical conductivity of the nanocomposites were improved using a particular amount of the surfactant. Environmental stability test results showed that the polyimide with 1 wt% of CNTs produced with the aid of the surfactant possessed excellent reliability in high‐temperature and high‐humidity environments. Surfactants were successfully used to obtain fine‐structure polyimide/CNT nanocomposites by in situ polymerization. The enhancement of the mechanical properties was attributed to the incorporation of the surfactant. A percolation of electrical conductivity could be achieved with 1 wt% of CNTs. Copyright © 2010 Society of Chemical Industry 相似文献
9.
Nantao Hu Hongwei Zhou Guodong Dang Xianhua Rao Chunhai Chen Wanjin Zhang 《Polymer International》2007,56(5):655-659
Multi‐walled carbon nanotube (MWNT)‐reinforced polyimide nanocomposites were synthesized by in situ polymerization of monomers in the presence of acylated MWNTs. The acyl groups associated with the MWNTs participated in the reaction through the formation of amide bonds. This process enabled uniform dispersion of MWNT bundles in the polymer matrix. The resultant MWNT–polyimide nanocomposite films were optically transparent with significant mechanical enhancement at a very low loading (0.5 wt%). Evidence has been obtained for improved interactions between the nanotubes and the matrix polymer. Copyright © 2006 Society of Chemical Industry 相似文献
10.
The preparation of thermoplastic nanocomposites of waterborne polyurethane (WBPU) and multiwall carbon nanotubes (MWCNTs) via an in situ polymerization approach is presented. The effects of the presence and content of MWCNTs on the morphology and thermal, mechanical and electrical properties of the nanocomposites were investigated. Carbon nanotubes were modified with amide groups in order to enhance their chemical affinity towards WBPU. Thermogravimetric studies show enhanced thermal stability of the nanocomposites. Scanning and transmission electronic microscopy images prove that functionalized carbon nanotubes can be effectively dispersed in WBPU matrix. Mechanical properties reveal that Young's modulus and tensile strength tend to increase when appropriate amounts of MWCNTs are loaded due to the reinforcing effect of the functionalized carbon nanotubes. Thermal properties show an increase in the glass transition temperature and storage modulus with an increase in MWCNT content. X‐ray diffraction reveals better crystallization of the WBPU in the presence of MWCNTs. The WBPU/MWCNT nanocomposite film containing 1 wt% of MWCNTs exhibits a conductivity nearly five orders of magnitude higher than that of WBPU film. © 2017 Society of Chemical Industry 相似文献
11.
BACKGROUND: The development of carbon nanotube‐reinforced composites has been impeded by the difficult dispersion of the nanotubes in polymers and the weak interaction between the nanofiller and matrices. Efficient dispersion of carbon nanotubes is essential for the formation of a functional nanotube network in a composite matrix. RESULTS: Multiwalled carbon nanotubes (MWNTs) were incorporated into a polyimide matrix to produce MWNT/polyimide nanocomposites. To disperse well the MWNTs in the matrix and thus improve the interfacial adhesion between the nanotubes and the polymer, ‘branches’ were grafted onto the surface of the nanotubes by reacting octadecyl isocyanate with carboxylated MWNTs. The functionalized MWNTs were suspended in a precursor solution, and the dispersion was cast, followed by drying and imidization to obtain MWNT/polyimide nanocomposites. CONCLUSION: The functionalized MWNTs appear as a homogeneous dispersion in the polymer matrix. The thermal stability and the mechanical properties are greatly improved, which is attributed to the strong interactions between the functionalized MWNTs and the polyimide matrix. Copyright © 2009 Society of Chemical Industry 相似文献
12.
In situ anionic ring opening polymerization is used to prepare monomer casting polyamide 6 (MCPA6)/carbon nanotubes (CNTs) nanocomposites, whereby water is used as auxiliary dispersing agent of hydroxyl functionalized multiwalled carbon nanotubes (MWNTs‐OH) and ε‐caprolactam (CL) monomer. The MWNTs‐OH were dispersed homogenously in MCPA6 matrix when being observed through transmission electron microcopy. The well dispersed MWNTs‐OH existed at the center of many radial texture phases in MCPA6 matrix. Polarizing microscope analysis showed that these radial texture phases were MCPA6 spherulitic crystallities. Differential scanning calorimetry analysis revealed that the crystallization temperature of the MCPA6/MWNTs‐OH nanocomposites had been improved by adding only 0.2 wt % MWNTs‐OH when compared with pure MCPA6. The influence of MWNTs‐OH on the thermal stability of MCPA6 under nitrogen and air environments was also investigated by thermal gravimetric analysis (TGA). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
13.
Chih‐Chun Teng Chen‐Chi M. Ma Shin‐Yi Yang Kuo‐Chan Chiou Tzong‐Ming Lee Chin‐Lung Chiang 《应用聚合物科学杂志》2012,123(2):888-896
The well dispersed multiwalled carbon nanotube (MWCNT)/epoxy composites were prepared by functionalization of the MWCNT surfaces with glycidyl methacrylate (GMA). The morphology and thermal properties of the epoxy nanocomposites were investigated and compared with the surface characteristics of MWCNTs. GMA‐grafted MWCNTs improved the dispersion and interfacial adhesion in epoxy resin, and enhanced the network structure. The storage modulus of 3 phr GMA‐MWCNTs/epoxy composites at 50°C increased from 0.32 GPa to 2.87 GPa (enhanced by 799%) and the increased tanδ from 50.5°C to 61.7°C (increased by 11.2°C) comparing with neat epoxy resin, respectively. Furthermore, the thermal conductivity of 3 phr GMA‐MWCNTs/epoxy composite is increased by 183%, from 0.2042 W/mK (neat epoxy) to 0.5781 W/mK. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
14.
In this study, polypropylene/carbon nanotube nanocomposites were prepared via in situ polymerization using a bi‐supported Ziegler ? Natta catalytic system. In this system, magnesium ethoxide and multiwall carbon nanotubes (MWCNTs) are jointly used as catalyst supports. SEM images reveal the distribution and quite good dispersion of MWCNTs throughout the polypropylene (PP) matrix. The thermal properties of the samples were examined using DSC and TGA tests. The results show that the crystallization temperature of the nanocomposites significantly increases while the melting point is not markedly affected. In addition, the thermal stability is improved. The melt rheological properties of PP/MWCNT nanocomposites in the linear and nonlinear viscoelastic response regions were studied. An increment of the complex viscosity (η*), storage modulus (G′) and loss modulus (G′′) and a decrement of the loss factor (tan δ) compared with neat PP are observed. Steady shear flow experiments show an increase in shear viscosity with increasing the MWCNT content. © 2013 Society of Chemical Industry 相似文献
15.
Influence of processing condition and carbon nanotube on mechanical properties of injection molded multi‐walled carbon nanotube/poly(methyl methacrylate) nanocomposites 下载免费PDF全文
In this work, multi‐walled carbon nanotubes (MWCNT) and poly(methyl methacrylate) (PMMA) pellets were compounded via corotating twin‐screw extruder. The produced MWCNT/PMMA nanocomposite pellets were injection molded. The effect of MWCNT concentration, injection melt temperature and holding pressure on mechanical properties of the nanocomposites were investigated. To examine the mechanical properties of the MWCNT/PMMA nanocomposites, tensile test, charpy impact test, and Rockwell hardness are considered as the outputs. Design of experiments (DoE) is done by full factorial method. The morphology of the nanocomposites was performed using scanning electron microscopy (SEM). The results revealed when MWCNT concentration are increased from 0 to 1.5 wt %, tensile strength and elongation at break were reduced about 30 and 40%, respectively, but a slight increase in hardness was observed. In addition, highest impact strength belongs to the nanocomposite with 1 wt % MWCNT. This study also shows that processing condition significantly influence on mechanical behavior of the injection molded nanocomposite. In maximum holding pressure (100 bar), the nanocomposites show highest tensile strength, elongation, impact strength and hardness. According to findings, melt temperature has a trifle effect on elongation, but it has a remarkable influence on tensile strength. In the case of impact strength, higher melt temperature is favorable. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43738. 相似文献
16.
Morphology,mechanical properties and electromagnetic shielding effectiveness of poly(styrene‐b‐ethylene‐ran‐butylene‐b‐styrene)/carbon nanotube nanocomposites: effects of maleic anhydride,carbon nanotube loading and processing method 下载免费PDF全文
Nanocomposites based on poly(styrene‐b‐ethylene‐ran‐butylene‐b‐styrene) (SEBS) and carbon nanotubes (CNTs) (SEBS/CNT) as well as SEBS grafted with maleic anhydride (SEBS‐MA)/CNT were successfully prepared for electromagnetic shielding applications. Both SEBS/CNT and SEBS‐MA/CNT nanocomposites were prepared by melt compounding and were post‐processed using two different techniques: tape extrusion and compression moulding. The different nanocomposites were characterized by Raman spectroscopy and rheological analysis. Their mechanical properties, electrical properties (10-2–105 Hz) and electromagnetic shielding effectiveness (8.2–12.4 GHz) were also evaluated. The results showed that the CNT loading amount, the presence of MA in the matrix and the shaping technique used strongly influence the final morphologies and properties of the nanocomposites. Whilst the nanocomposite containing 8 wt% CNTs prepared by compression moulding presented the highest electromagnetic shielding effectiveness (with a value of 56.73 dB, which corresponds to an attenuation of 99.9996% of the incident radiation), the nanocomposite containing 5 wt% CNTs prepared by tape extrusion presented the best balance between electromagnetic and mechanical properties and was a good candidate to be used as an efficient flexible electromagnetic interference shielding material. © 2018 Society of Chemical Industry 相似文献
17.
For the preparation of high‐quality polymeric carbon nanocomposites, it is required that carbon nanotubes are fully compatible with matrix polymers. For this purpose, amino‐functionalized multiple‐walled carbon nanotubes (a‐MWNTs) were synthesized. The a‐MWNTs/polyimide nanocomposite films were prepared through in situ polymerization. According to the spectroscopic characterizations, the a‐MWNTs were homogeneously dispersed in the nanocomposite films as the acid‐functionalized MWNTs. The mechanical properties of the polyimide composite were also studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
18.
BACKGROUND: Polymer/hydroxyapatite (HA) nanocomposites have emerged in recent years as a new class of biomaterials that can be used as artificial bone. Compared to pure HA or HA‐based bioceramics, and metallic implants, they exhibit good plasticity, improved toughness and good mechanical compatibility with natural bone. Compared to their microcomposite counterparts and the pristine polymer matrix, they show increased tensile strength and modulus, and enhanced bioactivity. RESULTS: In this study, polyamide 6 (PA6)/nanoscale HA (n‐HA) nanocomposites were prepared via in situ hydrolytic ring‐opening polymerization of ε‐caprolactam in the presence of newly synthesized n‐HA aqueous slurry. The synthesized n‐HA, which is similar to bone apatite in chemical composition, microscopic morphology and phase composition, dispersed uniformly in the composites even if its loading was up to 60 wt%. The PA6/n‐HA composites show a similarity to natural bone in chemical composition to a certain extent. Mechanical tests show that the composites are reinforced considerably by the incorporation of needle‐like n‐HA, and the composites have mechanical properties near to those of natural bone. CONCLUSION: The PA6/n‐HA nanocomposite with high n‐HA content shows a similarity to natural bone in terms of chemistry and mechanical properties. This makes it a possible candidate for biomaterials suitable for bone repair or fixation. Copyright © 2008 Society of Chemical Industry 相似文献
19.
Lala Zhang Yuzi Xiong Encai Ou Zhongming Chen Yuanqin Xiong Weijian Xu 《应用聚合物科学杂志》2011,122(2):1316-1324
Nylon 6/carboxylic acid‐functionalized silica nanoparticles (SiO2‐COOH) nanocomposites were prepared by in situ polymerization of caprolactam in the presence of SiO2‐COOH. The aim of this work was to study the effect of carboxylic silica on the properties of the nylon 6 through the interfacial interactions between the SiO2‐COOH nanoparticles and the nylon 6 matrix. For comparison, pure nylon 6, nylon 6/SiO2 (unmodified) and nylon 6/amino‐functionalized SiO2 (SiO2‐NH2) were also prepared via the same method. Fourier transform infrared spectrometer (FTIR) spectroscopy was used to evaluate the structure of SiO2‐COOH and nylon 6/SiO2‐COOH. The results from thermal gravimetric analysis (TGA) indicated that decomposition temperatures of nylon 6/SiO2‐COOH nanocomposites at the 5 wt % of the total weight loss were higher than the pure nylon 6. Differential scanning calorimeter (DSC) studies showed that the melting point (Tm) and degree of crystallinity (Xc) of nylon 6/SiO2‐COOH were lower than the pure nylon 6. Mechanical properties results of the nanocomposites showed that nylon 6 with incorporation of SiO2‐COOH had better mechanical properties than that of pure nylon 6, nylon 6/SiO2, and nylon 6/SiO2‐NH2. The morphology of SiO2, SiO2‐NH2, and SiO2‐COOH nanoparticles in nylon 6 matrix was observed using SEM measurements. The results revealed that the dispersion of SiO2‐COOH nanoparticles in nylon 6 matrix was better than SiO2 and SiO2‐NH2 nanoparticles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
20.
Sven Kselau Saskia Scheel Linnea Petersson Chau‐Hon Ho Gerrit A Luinstra 《Polymer International》2019,68(5):946-954
Nanocomposites of isotactic polypropylene (iPP) with 0.5 wt% filler of MgO@Mg(OH)2 (35 nm) or silicon dioxide (20–60 nm) or barium titanate (50 nm) nanoparticles were obtained from melt compounding of filler masterbatches with commercial iPP. The masterbatches with 5 wt% nanofiller were prepared in an in situ polymerization procedure using a metallocene/methylaluminoxane (MAO) catalyst system that was supported on the respective oxides. The original agglomerates of the nanoparticles were broken up by treatment with dibutylmagnesium for MgO@Mg(OH)2, and with ultrasound in the presence of MAO for SiO2 and BaTiO3. The tacticity (98% mmmm) of the in situ formed PP was not influenced by the presence of the nanofillers. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy mapping show a fine dispersion of single particles and small clouds or clusters. The primary nanoparticles appear to be surrounded by polymer. The elongation at break was decreased to 50, 17 and 9% for MgO@Mg(OH)2), SiO2 and BaTiO3, respectively. After melt compounding with iPP, a homogeneous single‐particle distribution of the oxidic nanoparticles was found in the resulting composites with 0.5 wt% filler content. © 2019 Society of Chemical Industry 相似文献