首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This letter aims at resolving the issues raised in the recent short communication (Int. J. Numer. Meth. Engng 2008; 76 (8):1285–1295. DOI: 10.1002/nme.2460 ) and answered by (Int. J. Numer. Meth. Engng 2009; DOI: 10.1002/nme.2587 ) by proposing a systematic approximation scheme based on non‐mapped shape functions, which both allows to fully exploit the unique advantages of the smoothed finite element method (SFEM) (Comput. Mech. 2007; 39 (6):859–877. DOI: 10.1007/s00466‐006‐0075‐4 ; Commun. Numer. Meth. Engng 2009; 25 (1):19–34. DOI: 10.1002/cnm.1098 ; Int. J. Numer. Meth. Engng 2007; 71 (8):902–930; Comput. Meth. Appl. Mech. Engng 2008; 198 (2):165–177. DOI: 10.1016/j.cma.2008.05.029 ; Comput. Meth. Appl. Mech. Engng 2007; submitted; Int. J. Numer. Meth. Engng 2008; 74 (2):175–208. DOI: 10.1002/nme.2146 ; Comput. Meth. Appl. Mech. Engng 2008; 197 (13–16):1184–1203. DOI: 10.1016/j.cma.2007.10.008 ) and resolve the existence, linearity and positivity deficiencies pointed out in (Int. J. Numer. Meth. Engng 2008; 76 (8):1285–1295). We show that Wachspress interpolants (A Rational Basis for Function Approximation. Academic Press, Inc.: New York, 1975) computed in the physical coordinate system are very well suited to the SFEM, especially when elements are heavily distorted (obtuse interior angles). The proposed approximation leads to results that are almost identical to those of the SFEM initially proposed in (Comput. Mech. 2007; 39 (6):859–877. DOI: 10.1007/s00466‐006‐0075‐4 ). These results suggest that the proposed approximation scheme forms a strong and rigorous basis for the construction of SFEMs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we address the cost versus accuracy capabilities for the generalized FEM (GFEM) which was developed in (Comput. Methods Appl. Mech. Eng. 2003; 192 :3109–3161, Int. J. Numer. Meth. Engng 2004; 60 :1639–1672, Ph.D. Thesis, Texas A&M University, College Station, TX, August 2003 (Advisor: T. Strouboulis)), and also the construction of two‐sided a posteriori error estimates, which can be used to assess the achieved accuracy at all levels of the method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
We propose a fourth‐order compact scheme on structured meshes for the Helmholtz equation given by R(φ):=f( x )+Δφ+ξ2φ=0. The scheme consists of taking the alpha‐interpolation of the Galerkin finite element method and the classical central finite difference method. In 1D, this scheme is identical to the alpha‐interpolation method (J. Comput. Appl. Math. 1982; 8 (1):15–19) and in 2D making the choice α=0.5 we recover the generalized fourth‐order compact Padé approximation (J. Comput. Phys. 1995; 119 :252–270; Comput. Meth. Appl. Mech. Engrg 1998; 163 :343–358) (therein using the parameter γ=2). We follow (SIAM Rev. 2000; 42 (3):451–484; Comput. Meth. Appl. Mech. Engrg 1995; 128 :325–359) for the analysis of this scheme and its performance on square meshes is compared with that of the quasi‐stabilized FEM (Comput. Meth. Appl. Mech. Engrg 1995; 128 :325–359). In particular, we show that the relative phase error of the numerical solution and the local truncation error of this scheme for plane wave solutions diminish at the rate O((ξ?)4), where ξ, ? represent the wavenumber and the mesh size, respectively. An expression for the parameter α is given that minimizes the maximum relative phase error in a sense that will be explained in Section 4.5. Convergence studies of the error in the L2 norm, the H1 semi‐norm and the l Euclidean norm are done and the pollution effect is found to be small. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
5.
An a posteriori error estimator is proposed in this paper for the p‐ and hp‐versions of the finite element method in two‐dimensional linear elastostatic problems. The local error estimator consists in an enhancement of an error indicator proposed by Bertóti and Szabó (Int. J. Numer. Meth. Engng. 1998; 42 :561–587), which is based on the minimum complementary energy principle. In order to obtain the local error estimate, this error indicator is corrected by a factor which depends only on the polynomial degree of the element. The proposed error estimator shows a good effectivity index in meshes with uniform and non‐uniform polynomial distributions, especially when the global error is estimated. Furthermore, the local error estimator is reliable enough to guide p‐ and hp‐adaptive refinement strategies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a multiscale/stabilized finite element formulation for the incompressible Navier–Stokes equations written in an Arbitrary Lagrangian–Eulerian (ALE) frame to model flow problems that involve moving and deforming meshes. The new formulation is derived based on the variational multiscale method proposed by Hughes (Comput Methods Appl Mech Eng 127:387–401, 1995) and employed in Masud and Khurram in (Comput Methods Appl Mech Eng 193:1997–2018, 2006); Masud and Khurram in (Comput Methods Appl Mech Eng 195:1750–1777, 2006) to study advection dominated transport phenomena. A significant feature of the formulation is that the structure of the stabilization terms and the definition of the stabilization tensor appear naturally via the solution of the sub-grid scale problem. A mesh moving technique is integrated in this formulation to accommodate the motion and deformation of the computational grid, and to map the moving boundaries in a rational way. Some benchmark problems are shown, and simulations of an elastic beam undergoing large amplitude periodic oscillations in a viscous fluid domain are presented.  相似文献   

7.
We discuss explicit coupling schemes for fluid‐structure interaction problems where the added mass effect is important. In this paper, we show the close relation between coupling schemes by using Nitsche's method and a Robin–Robin type coupling. In the latter case, the method may be implemented either using boundary integrals of the stresses or the more conventional discrete lifting operators. Recalling the explicit method proposed in Comput. Methods Appl. Mech. Engrg. 198(5‐8):766–784, 2009, we make the observation that this scheme is stable under a hyperbolic type CFL condition, but that optimal accuracy imposes a parabolic type CFL conditions because of the splitting error. Two strategies to enhance the accuracy of the coupling scheme under the hyperbolic CFL‐condition are suggested, one using extrapolation and defect‐correction and one using a penalty‐free non‐symmetric Nitsche method. Finally, we illustrate the performance of the proposed schemes on some numerical examples in two and three space dimensions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The numerical simulation of contact problems is still a delicate matter especially when large transformations are involved. In that case, relative large slidings can occur between contact surfaces and the discretization error induced by usual finite elements may not be satisfactory. In particular, usual elements lead to a facetization of the contact surface, meaning an unavoidable discontinuity of the normal vector to this surface. Uncertainty over the precision of the results, irregularity of the displacement of the contact nodes and even numerical oscillations of contact reaction force may result of such discontinuity. Among the existing methods for tackling such issue, one may consider mortar elements (Fischer and Wriggers, Comput Methods Appl Mech Eng 195:5020–5036, 2006; McDevitt and Laursen, Int J Numer Methods Eng 48:1525–1547, 2000; Puso and Laursen, Comput Methods Appl Mech Eng 93:601–629, 2004), smoothing of the contact surfaces with additional geometrical entity (B-splines or NURBS) (Belytschko et al., Int J Numer Methods Eng 55:101–125, 2002; Kikuchi, Penalty/finite element approximations of a class of unilateral contact problems. Penalty method and finite element method, ASME, New York, 1982; Legrand, Modèles de prediction de l’interaction rotor/stator dans un moteur d’avion Thèse de doctorat. PhD thesis, École Centrale de Nantes, Nantes, 2005; Muñoz, Comput Methods Appl Mech Eng 197:979–993, 2008; Wriggers and Krstulovic-Opara, J Appl Math Mech (ZAMM) 80:77–80, 2000) and, the use of isogeometric analysis (Temizer et al., Comput Methods Appl Mech Eng 200:1100–1112, 2011; Hughes et al., Comput Methods Appl Mech Eng 194:4135–4195, 2005; de Lorenzis et al., Int J Numer Meth Eng, in press, 2011). In the present paper, we focus on these last two methods which are combined with a finite element code using the bi-potential method for contact management (Feng et al., Comput Mech 36:375–383, 2005). A comparative study focusing on the pros and cons of each method regarding geometrical precision and numerical stability for contact solution is proposed. The scope of this study is limited to 2D contact problems for which we consider several types of finite elements. Test cases are given in order to illustrate this comparative study.  相似文献   

9.
This paper introduces a new stabilized finite element method based on the finite calculus (Comput. Methods Appl. Mech. Eng. 1998; 151 :233–267) and arbitrary Lagrangian–Eulerian techniques (Comput. Methods Appl. Mech. Eng. 1998; 155 :235–249) for the solution to free surface problems. The main innovation of this method is the application of an overlapping domain decomposition concept in the statement of the problem. The aim is to increase the accuracy in the capture of the free surface as well as in the resolution of the governing equations in the interface between the two fluids. Free surface capturing is based on the solution to a level set equation. The Navier–Stokes equations are solved using an iterative monolithic predictor–corrector algorithm (Encyclopedia of Computational Mechanics. Wiley: New York, 2004), where the correction step is based on imposing the divergence‐free condition in the velocity field by means of the solution to a scalar equation for the pressure. Examples of application of the ODDLS formulation (for overlapping domain decomposition level set) to the analysis of different free surface flow problems are presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The paper presents a computational method for predicting the initial geometry of a finitely deforming anisotropic elastic body from a given deformed state. The method is imperative for a class of problem in stress analysis, particularly in biomechanical applications. While the basic idea has been established elsewhere Comput. Methods Appl. Mech. Eng. 1996; 136 :47–57; Int. J. Numer. Meth. Engng 1998; 43 : 821–838), the implementation in general anisotropic solids is not a trivial exercise, but comes after a systematic development of Eulerian representations of constitutive equations. In this paper, we discuss the general representation in the context of fibrous hyperelastic solids, and provide explicit stress functions for some commonly used soft tissue models including the Fung model and the Holzapfel model. A three‐field mixed formulation is introduced to enforce quasi‐incompressibility constraints. The practical utility of this method is demonstrated using an example of aneurysm stress analysis. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
This paper is written in response to the recently published paper (Int. J. Numer. Meth. Engng 2008; 76 :1285–1295) at IJNME entitled ‘On the smoothed finite element method’ (SFEM) by Zhang HH, Liu SJ, Li LX. In this paper we
  • (1) repeat briefly the important essence of the original SFEM presented in (Comp. Mech. 2007; 39 : 859–877; Int. J. Numer. Meth. Engng 2007; 71 :902–930; Int. J. Numer. Meth. Engng 2008; 74 :175–208; Finite Elem. Anal. Des. 2007; 43 :847–860; J. Sound Vib. 2007; 301 :803–820), and
  • (2) examine further issues in the evaluation of the shape functions used in the SFEM.
It will be shown that the ‘SFEM’ presented in paper (Int. J. Numer. Meth. Engng 2008; 76 :1285–1295) is not at all our original SFEM presented in (Comp. Mech. 2007; 39 :859–877; Int. J. Numer. Meth. Engng 2007; 71 :902–930; Int. J. Numer. Meth. Engng 2008; 74 :175–208; Finite Elem. Anal. Des. 2007; 43 :847–860; J. Sound Vib. 2007; 301 :803–820). Therefore, all these ‘Theorems’, ‘Corollaries’ and ‘Remarks’ presented in paper (Int. J. Numer. Meth. Engng 2008; 76 :1285–1295) have nothing to do with our original SFEM. The properties of the original SFEM stand as they were presented in our original papers (Comp. Mech. 2007; 39 :859–877; Int. J. Numer. Meth. Engng 2007; 71 :902–930; Int. J. Numer. Meth. Engng 2008; 74 :175–208; Finite Elem. Anal. Des. 2007; 43 :847–860; J. Sound Vib. 2007; 301 :803–820). Finally, we brief on our advancements made far beyond our original SFEM and our visions on future numerical methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The a posteriori error estimation in constitutive law has already been extensively developed and applied to finite element solutions of structural analysis problems. The paper presents an extension of this estimator to problems governed by the Helmholtz equation (e.g. acoustic problems) that we have already partially reported, this paper containing informations about the construction of the admissible fields for acoustics. Moreover, it has been proven that the upper bound property of this estimator applied to elasticity problems (the error in constitutive law bounds from above the exact error in energy norm) does not generally apply to acoustic formulations due to the presence of the specific pollution error. The numerical investigations of the present paper confirm that the upper bound property of this type of estimator is verified only in the case of low (non‐dimensional) wave numbers while it is violated for high wave numbers due to the pollution effect. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
The paper presents a novel strategy providing fully computable upper bounds for the energy norm of the error in the context of three-dimensional linear finite element approximations of the reaction-diffusion equation. The upper bounds are guaranteed regardless the size of the finite element mesh and the given data, and all the constants involved are fully computable. The upper bound property holds if the shape of the domain is polyhedral and the Dirichlet boundary conditions are piecewise-linear. The new approach is an extension of the flux-free methodology introduced by Parés and Díez in the paper “A new equilibrated residual method improving accuracy and efficiency of flux-free error estimates”, which introduces a guaranteed, low-cost, and efficient flux-free method substantially reducing the computational cost of obtaining guaranteed bounds using flux-free methods while retaining the good quality of the bounds. Besides extending the 2D methodology, specific new modifications are introduced to further reduce the computational cost in the three-dimensional setting. The presented methodology also provides a new strategy to obtain equilibrated boundary tractions, which improves the quality of standard techniques while having a similar computational cost.  相似文献   

14.
This paper contains a first systematic analysis of a posteriori estimation for finite element solutions of the Helmholtz equation. In this first part, it is shown that the standard a posteriori estimates, based only on local computations, severely underestimate the exact error for the classes of wave numbers and the types of meshes employed in engineering analysis. This underestimation can be explained by observing that the standard error estimators cannot detect one component of the error, the pollution error, which is very significant at high wave numbers. Here, a rigorous analysis is carried out on a one-dimensional model problem. The analytical results for the residual estimator are illustrated and further investigated by numerical evaluation both for a residual estimator and for the ZZ-estimator based on smoothening. In the second part, reliable a posteriori estimators of the pollution error will be constructed. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
Stabilized finite-element method for the stationary Navier-Stokes equations   总被引:1,自引:0,他引:1  
A stabilized finite-element method for the two-dimensional stationary incompressible Navier-Stokes equations is investigated in this work. A macroelement condition is introduced for constructing the local stabilized formulation of the stationary Navier-Stokes equations. By satisfying this condition, the stability of the Q1P0 quadrilateral element and the P1P0 triangular element are established. Moreover, the well-posedness and the optimal error estimate of the stabilized finite-element method for the stationary Navier-Stokes equations are obtained. Finally, some numerical tests to confirm the theoretical results of the stabilized finite-element method are provided.  相似文献   

16.
This contribution presents an extended global derivative recovery for enriched finite element methods (FEMs), such as the extended FEM along with an associated error indicator. Owing to its simplicity, the proposed scheme is ideally suited to industrial applications. The procedure is based on global minimization of the L2 norm of the difference between the raw strain field (C?1) and the recovered (C0) strain field. The methodology engineered in this paper extends the ideas of Oden and Brauchli (Int. J. Numer. Meth. Engng 1971; 3 ) and Hinton and Campbell (Int. J. Numer. Meth. Engng 1974; 8 ) by enriching the approximation used for the construction of the recovered derivatives (strains) with the gradients of the functions employed to enrich the approximation employed for the primal unknown (displacements). We show linear elastic fracture mechanics examples, both in simple two‐dimensional settings, and for a three‐dimensional structure. Numerically, we show that the effectivity index of the proposed indicator converges to unity upon mesh refinement. Consequently, the approximate error converges to the exact error, indicating that the error indicator is valid. Additionally, the numerical examples suggest a novel adaptive strategy for enriched approximations in which the dimensions of the enrichment zone are first increased, before standard h‐ and p‐adaptivities are applied; we suggest to coin this methodology e‐adaptivity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
This article concerns stabilized finite element approximations for flow-type sensitive fluid flows. A quasi-Newtonian model, based on a kinematic parameter of flow classification and shear and extensional viscosities, is used to represent the fluid behavior from pure shear up to pure extension. The flow governing equations are approximated by a multi-field Galerkin least-squares (GLS) method, in terms of strain rate, pressure and velocity (D-p-u). This method, which may be viewed as an extension of the formulation for constant viscosity fluids introduced by Behr et al. (Comput Methods Appl Mech 104:31–48, 1993), allows the use of combinations of simple Lagrangian finite element interpolations. Mild Weissenberg flows of quasi-Newtonian fluids—using Carreau viscosities with power-law indexes varying from 0.2 to 2.5—are carried out through a four-to-one planar contraction. The performed physical analysis reveals that the GLS method provides a suitable approximation for the problem and the results are in accordance with the related literature.  相似文献   

18.
We describe a new equivalent charge formulation (ECF), i.e. the combined ECF (CECF), for electrostatic analysis of structures consisting of conductors and dielectrics. The CECF uses a weighted combination of the single‐ and the adjoint double‐layer operators to account for the potential on the conductor–dielectric surface and is found to have better conditioning than the standard ECF. A perturbation approach is presented to insure that the capacitances are computed accurately even when the permittivity ratios of the dielectrics are vary large. Unlike the original perturbation approach, this new approach uses only one system matrix with different right‐hand sides. A wavelet Galerkin boundary element method (WGBEM) for solving the ECF and CECF is developed based on the new variable‐order WGBEM introduced in (J. Numer. Math. 2004; 12 (3):233–254). The wavelets are directly constructed on the usual boundary element triangulation. This enables the proposed WGBEM to solve electrostatic problems in complicated geometries, unstructured meshes and comparatively coarse discretizations. The quasi‐vanishing moment wavelets introduced in (Comput. Methods Appl. Mech. Engng 2008; 197 :4000–4006) are used to further reduce the memory and CPU time requirements. Several numerical examples show that the proposed CECF converges faster than the ECF, and that the WGBEM, using both the ECF and CECF, has almost linear complexity in solving large‐scale 3‐D electrostatic problems. Moreover, since the truncated non‐standard form is computed once and then stored, the WGBEM is very suitable for solving problems with multiple right‐hand sides, like the perturbation approach in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The paper introduces a methodology to compute strict upper and lower bounds for linear‐functional outputs of the exact solutions of the advection–diffusion–reaction equation. The bounds are computed using implicit a posteriori error estimators from stabilized finite element approximations of the exact solution. The new methodology extends the a posteriori error estimates yielding bounds for the standard Galerkin formulation to be able to obtain bounds for stabilized formulations. This methodology is combined with both hybrid‐flux and flux‐free techniques for error assessment. The application to stabilized formulations provides sharper estimates than when applied to Galerkin methods. The best results are found in combination with the flux‐free technique. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
An iterative procedure, namely the minimal error method, for solving stably the Cauchy problem associated with Helmholtz-type equations is introduced and investigated in this paper. This method is compared with another two iterative algorithms previously proposed by Marin et al. (Comput Mech 31:367–377, 2003; Eng Anal Bound Elem 28:1025–1034, 2004), i.e. the conjugate gradient and Landweber–Fridman methods, respectively. The inverse problem analysed in this study is regularized by providing an efficient stopping criterion that ceases the iterative process in order to retrieve stable numerical solutions. The numerical implementation of the aforementioned iterative algorithms is realized by employing the boundary element method for both two-dimensional Helmholtz and modified Helmholtz equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号