首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
聚合物/层状硅酸盐纳米复合材料的制备研究   总被引:1,自引:0,他引:1  
本文以聚丙烯和有机蒙脱土为原料,采用插层复合法制备聚合物/层状硅酸盐纳米复合材料,用透射电镜对复合材料的结构进行表征,测定了复合材料的力学性能,结果表明,用马来酸酐化聚丙烯作界面相容剂,聚丙烯大分子链分子插层进入到有机改性蒙脱土的硅酸盐片层中间,并且聚丙烯/蒙脱土纳米复合材料的力学性能有一定的提高。  相似文献   

2.
在纳米TiO2表面包覆一层SiO2薄膜,用含氨基的硅烷偶联剂对TiO2表面进行修饰合成功能化纳米TiO2(sTiO2-NH2),然后将sTi02-NH:与聚丙烯(PP)及少量马来酸酐接枝聚丙烯(PP-g-MAH)通过熔融共混结合反应增容技术制备PWPP-g-MAH/sTiO2-NH2纳米复合材料。考察了纳米粒子和大分子相容剂用量对复合材料性能的影响。由于功能化纳米粒子表面-NH2与PP-g-MAH发生了化学反应,增强了两相的界面作用并促使纳:米粒子在PP中的均匀分散,在添加质量分数为2%的纳米粒子和质量分数为5%大分子相容剂时,相对纯PP材料而言,复合材料的拉伸和冲击强度分别提高了32%和400%,实现了对PP的增强增韧。  相似文献   

3.
MAH对PP木塑复合材料的直接反应增容研究   总被引:2,自引:0,他引:2  
通过过氧化二异丙苯、马来酸酐、木粉和聚丙烯的直接反应挤出,实现了聚丙烯木塑复合材料的反应增容。利用扫描电子显微镜观测了复合材料冲击断面形貌。测试了复合材料的负荷变形温度和力学性能。结果表明,直接反应增容后,复合材料木塑两相结合情况明显改善;负荷变形温度、拉伸强度和弯曲强度显著提高,其最大值分别达115℃4,1 MPa和63 MPa,比增容前分别提高15℃3,7%和31%;而断裂伸长率和冲击强度则有所下降。  相似文献   

4.
梁玉蓉  谭英杰 《化工学报》2008,59(6):1571-1577
采用熔体插层法制备聚丙烯(PP)/有机黏土(OMMT)纳米复合材料。XRD和TEM的测试结果表明,采用熔体插层法制备的PP/OMMT复合材料是剥离型纳米复合材料。力学性能实验结果表明,相容剂的加入提高了PP与OMMT之间的相互作用,使其各项力学性能都得到了提高;PP/OMMT纳米复合材料的各项力学性能在有机黏土含量较小的情况下,就可以有较大幅度的提高;与纯PP相比,相容剂含量为10 phr、有机黏土用量为1 phr的聚丙烯基纳米复合材料具有最好的各项力学性能。  相似文献   

5.
The influence of compatibilization on the dynamic mechanical properties of polypropylene (PP) binary blends with polyamide‐6 (PA6), Talc, and oxidized PP (OPP) was investigated. The oxidation of PP homopolymer was performed in a internal mixer by using air as a oxidizing agent (under atmospheric pressure) and dodecanol‐1 as an accelerator at 180°C for 6½ h [Abdouss, M.; Sharifi‐Sanjani, N.; Bataille, P. J Appl Polym Sci 1999, 36, 10]. In the blends, OPP was used as a blend component and compared with PP over the whole concentration range. Pressed film blends of PP/OPP, PP/OPP/Talc, and PP/OPP/PA6 were examined by dynamic mechanical analyzer, thermal gravimetry analysis, and scanning electron microscopy. Mechanical properties such as tensile strength, modulus of elasticity, elongation, melt flow index, and hardness of the blends were measured. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2871–2883, 2004  相似文献   

6.
研究了反应性增容对聚丙烯(PP)/纳米SiO2复合材料结晶和流变性能的影响。反应性增容使PP的结晶峰温明显提高,结晶速率增大,球晶细化;复合材料的储能模量、损耗模量和复数黏度明显增大,熔体流动速率减小。在环氧功能化纳米SiO2质量分数为3%,反应性增容剂氨基化PP质量分数为10%时,复合材料的结晶峰温从115.8℃升到125.6℃,熔体流动速率从11.0g/10 min降到8.5 g/10 min。  相似文献   

7.
Combined effects of clay treatment and compatibilizer polymers on the structure and properties of polypropylene/clay nanocomposites were studied. Dynamic mechanical analysis was used to analyze comparatively the dynamic mechanical response of different nanocomposites prepared from polypropylene and montmorillonite‐rich bentonite, and to relate such response with the material microstructure. Two different bentonites were used: a purified Spanish natural bentonite was organophillized by means of 11‐undecyl‐ammonium ion and a commercial bentonite organophillized with dimethyl dehydrogenated tallow ammonium ion. Three different polar copolymers were employed as compatibilizer agents in some of the formulations: maleic anhydride‐grafted polypropylene, maleic anhydride‐grafted poly(styrene‐co‐ethylenebutylene‐co‐styrene), and poly(ethylene terephthalate‐co‐isophthalate) (PET). To ascertain the microstructure characteristics in the nanocomposites, wide angle X‐ray diffraction, transmission electron microscopy, and differential scanning calorimetry techniques were used. The nanocomposites containing both bentonite organophillized with 11‐undecyl‐ammonium ion and PET, and maleated PP as compatibilizer system, were found to have the highest storage modulus and the smallest loss factor values, which was mainly due to the better clay platelets dispersion. The dynamic mechanical response of nanocomposites prepared with bentonite organophillized with dimethyl dehydrogenated tallow ammonium ion and maleated SEBS was strongly affected by the presence of this compatibilizer. The temperature of PP and α, β, and γ relaxations strongly depended on the interactions between the different phases in the nanocomposites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1213–1223, 2006  相似文献   

8.
Multi‐walled carbon nanotubes (MWCNTs) filled polypropylene (PP) composites were prepared by a corotating intermeshing twin screw extruder. To improve the dispersion of MWCNTs, the surface of MWCNT was modified with 1,10‐diaminodecane, and maleic anhydride grafted polypropylene (MA‐g‐PP) was used as a compatibilizer. Micrographs of well dispersed functionalized MWCNTs (diamine‐MWCNT) were observed due to the reaction between MA‐g‐PP and diamine‐MWCNT in PP/MA‐g‐PP/diamine‐MWCNTs composites. The different behaviors in crystallization and melting temperatures of PP/MA‐g‐PP/diamine‐MWCNTs composite were observed compared to PP and PP/neat‐MWCNT. Especially, the decomposition temperature of the composite was increased by 50°C compared to PP. PP/MA‐g‐PP/diamine‐MWCNTs composite showed the highest complex viscosity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Polypropylene (PP)/layered-silicate organoclay nanocomposites and their fibers were prepared by melt compounding and melt spinning, respectively, in the presence or absence of compatibilizer (PP-based maleic anhydride compatibilizer) to examine the effects of the organoclay dispersion and rheological behavior on the internal structure and tensile properties of the nanocomposite fibers. The compatibilized nanocomposites showed solidlike plateau behavior and strain hardening due to a three-dimensional network structure in the shear and uniaxial elongational flows. The tensile properties of the nanocomposite fibers were reduced compared with those of the pure PP fibers because some of the layered silicates were present as partially aggregated forms and the molecular weight of the compatibilizer was lower than that of the pure PP matrix. It was also found that the tenacity of the nanocomposite fiber increased and then decreased as the compatibilizer content increased because the compatibilizer affected the internal structure of the nanocomposite fibers. The positive effect of the compatibilizer was to generate a more effective exfoliated structure of organoclay in the polymer matrix. The negative effect was that the melt-spun nanocomposite fiber had a lower molecular weight than the pure PP fiber because the compatibilizer had a lower molecular weight. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
The compatibilization efficiency of styrene–ethylene/butylene–styrene (SEBS) triblock copolymer in immiscible polypropylene (PP)/polystyrene (PS) 20/80 blends was evaluated in terms of not only morphology, but also rheology and fractionated crystallization behavior. Besides varying SEBS loading, four different mixing protocols were used to vary SEBS dispersion state. PP2/PS/SEBS blend, prepared by two‐step method mixing PS and SEBS primarily, presents the largest droplet size (1.278 μm) at the critical compatibilizer concentration (CCC = 1 wt %). However, the CCC of blends prepared by the other protocols is 2 wt %. And at the CCC, PP/PS2/SEBS (two step method mixing PP and SEBS primarily) shows the smallest droplet size (0.908 μm), followed by PP/PS/SEBS (one step method). The rheology and crystallization behavior of PP/PS blends could also be utilized to assess the compatibilization efficiency of SEBS, but only in the case of mixing under the same protocol and the content of SEBS below a CCC. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46244.  相似文献   

11.
The rubber nanocomposites containing ethylene vinyl acetate (EVA) having 60 wt % of vinyl acetate content and organomodified layered double hydroxide (DS‐LDH) as nanofiller have been prepared by solution intercalation method and characterized. The XRD and TEM analysis demonstrate the formation of completely exfoliated EVA/DS‐LDH nanocomposites for 1 wt % filler loading followed by partially exfoliated structure for 5–8 wt % of DS‐LDH content. EVA/DS‐LDH nanocomposites show improved mechanical properties such as tensile strength (TS) and elongation at break (EB) in comparison with neat EVA. The maximum value of TS (5.1 MPa) is noted for 3 wt % of DS‐LDH content with respect to TS value of pure EVA (2.6 MPa). The data from thermogravimetric analysis show the improvement in thermal stability of the nanocomposites by ≈15°C with respect to neat EVA. Limiting oxygen index measurements show that the nanocomposites act as good flame retardant materials. Swelling property analysis shows improved solvent resistance behavior of the nanocomposites (1, 3, and 5 wt % DS‐LDH content) compared with neat EVA‐60. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
将聚四氢呋喃二醇和富羟基活性蒙脱土(HMMT)进行预混插层处理,然后与甲苯二异氰酸酯(TDI)进行反应,得到层状硅酸盐复合预聚体。随后预聚体与扩链剂(DMTDA)反应制备出聚氨酯橡胶/片层硅酸盐纳米复合材料。采用材料拉伸机、X射线衍射(XRD)、透射电镜 (TEM)、差示扫描量热仪 (DSC)和热失重分析仪 (TGA) 等检测设备对聚醚型聚氨酯脲的结构与性能进行分析。结果表明:当PMMT的质量百分含量在2%时,片层硅酸盐粒子在聚氨酯基体内分散较均匀,形成了以剥离型为主、插层型为辅的复合型结构,聚醚型聚氨酯脲复合材料的拉伸强度比纯PUU提高了21%,断裂伸长率提高了12%,PUU复合材料的玻璃化转变温度(Tg)提高了5.8℃,第一失重区分解温度和最高分解温度高出纯聚氨酯17.33 ℃和13.94 ℃。无机纳米片层硅酸盐粒子的存在,聚氨酯橡胶的强度、韧性和热稳定性均得到改善。  相似文献   

13.
Syndiotactic polystyrene (sPS) based polymer nanocomposites have been prepared using surfactant‐free layered double hydroxides (SF‐LDHs) by a modified solvent mixing method with different loadings of 1, 2.5, 5 and 10 wt%. The nanocomposite preparation process involves a wash treatment of as‐prepared SF‐LDHs in an appropriate organic solvent followed by gel formation in a non‐polar solvent. The gel was directly used to make highly dispersed polymer nanocomposites. The influence of highly dispersed SF‐LDH platelets on the crystallization, polymorphism, thermal stability and flame retardancy of sPS was examined. It was shown that SF‐LDHs significantly enhance the crystallization rate of sPS and favour the formation of the thermodynamically stable β form along with the α form of sPS. Moreover, highly dispersed SF‐LDHs decrease the heat release rate and total heat release of sPS indicating the enhancement of flame‐retardant properties of sPS. In this way, it was found that the dispersed SF‐LDH platelets act as a multifunctional nanofiller for sPS. © 2015 Society of Chemical Industry  相似文献   

14.
In order to investigate whether the particle sizes of inorganic additives in polymer have an influence on the flame‐retardant and other properties of the polymer, five types of Mg3Al–CO3 layered double hydroxide (LDHs) with particle diameters of 80–100, 200–350, 500–550, 550–600, and 700–900 nm were synthesized using a hydrothermal method. The obtained Mg3Al–CO3 LDHs were treated using the aqueous miscible organic solvent treatment method to give highly dispersed platelets in Polypropylene (PP). The thermal stability, flame retardancy, and mechanical properties of the PP/AMO–LDH nanocomposites were investigated systematically. The results showed that the thermal stability and flame retardancy of PP could be improved after incorporating AMO–LDHs. The temperature at 50% weight loss (T0.5) of PP/LDH (700–900 nm) nanocomposites with a LDH loading of 15 wt % was increased by 57 °C. When the LDHs loading was 40 wt %, the peak heat release rate (PHRR) of the PP/LDH nanocomposites with small LDHs particle sizes (<350 nm) was decreased by ca. 58%. The limiting oxygen index was increased by 5% for PP/LDH (80–100 nm) nanocomposites. The response surface regression results also indicated that both LDH particle size and loading have influence on PHRR, heat release capacity, tensile strength, and elongation at break. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46204.  相似文献   

15.
The present work deals with the effect of stearate intercalated layered double hydroxide (St‐LDH) loadings on the morphological, mechanical, thermal, adhesive and flame retardant properties of polyurethane (PU)/St‐LDH nanocomposites prepared by the in situ polymerization method. X‐ray diffraction and transmission electron microscopy studies confirmed that exfoliation takes place at 3 wt% loading followed by intercalation at higher filler loadings in the PU matrix. The exfoliated structure has been further verified by atomic force microscopy. The measurements of stress‐strain, thermogravimetric analysis, dynamic mechanical analysis, lap shear strength and peel strength analysis showed that the nanocomposites containing 3 wt% St‐LDH exhibit excellent improvement in tensile strength (ca 175%) and log storage modulus (ca 14%), while PU/St‐LDH (5 wt%) possesses optimum improvement in glass transition temperature (ca 6 °C), lap shear strength (200%) and peel strength (130%) over neat PU. In addition, the gradual improvements in limiting oxygen index value with St‐LDH loading indicated the higher effectiveness in providing better barrier properties as well as better flame retardant behavior. Copyright © 2012 Society of Chemical Industry  相似文献   

16.
The effect of the in situ compatibilization on the mechanical properties of PP/PS blends was investigated. The application of Friedel-Crafts alkylation reaction to the PP/PS-blend compatibilization was assessed. Styrene/AlCl3 was used as catalyst system. The graft copolymer (PP-g-PS) formed at the interphase showed relatively high emulsifying strength. Scission reactions, occurring in parallel with grafting, were verified for PP and PS at high catalyst concentration, but no crosslinking reactions were detected. Tensile tests were performed on dog-bone specimens of the blends. Both elongation at break and toughness increased with catalyst concentration. At 0.7% AlCl3, a maximum was reached, which amounted to five times the value of the property for the uncompatibilized blend. At higher catalyst concentrations these properties decreased along with the PP molecular weight due to chain-scission reactions. On the other hand, the tensile strength did not change with the catalyst concentration. The in situ compatibilized blends showed considerable improvement in mechanical properties, but were adversely affected by chain scissions at high catalyst contents.  相似文献   

17.
反应性增容对PP/纳米SiO_2界面作用的影响   总被引:3,自引:1,他引:3  
通过动态力学分析和拉伸性能的测试,采用不同模型研究了反应性增容对聚丙烯(PP),纳米SiO2复合材料界面作用的影响.研究表明,反应性增容使纳米SiO2粒子与PP基体的界面作用明显增强,使PP分子链的松弛活化能增大.在环氧功能化改性纳米SiO2粒子和反应性增容剂(氨基化PP)的质量分数分别为3%和10%时,复合材料的冲击强度从1.85 kJ/m2提高到3.46 kJ/m2,体现了明显的增韧作用.  相似文献   

18.
This article concerns the in situ compatibilization of immiscible isotactic polypropylene/butadiene‐styrene‐butadiene triblock copolymer blends (i‐PP/SBS) by means of a reactive mixture. For this purpose, maleated PP (PP‐MAH) and SBS (SBS‐MAH) were used as functionalized polymers and 4,4′‐diaminediphenylmethane was used as a coupling agent between maleated polymers, resulting in a graft copolymer. Binary blends i‐PP/SBS, nonreactive ternary blends i‐PP/PP‐MAH/SBS, and reactive ternary blends i‐PP/PP‐MAH/SBS‐MAH with varying diamine and anhydride molar ratios were prepared. Torque measurements suggest a graft copolymerization during the melt blending for ternary reactive blends, but the extension of the grafting does not vary with the diamine and anhydride molar ratio, but with the elastomer concentration. The morphology of the blends was investigated by scanning electron microscopy. The morphology of binary and ternary nonreactive blends is similar, exhibiting elastomer domains disperse in the i‐PP matrix, whose sizes increase with elastomer concentration. On the other hand, the elastomer domain size in the ternary reactive blends is practically independent of the blends composition and of the diamine and anhydride molar ratio. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 847–855, 2002  相似文献   

19.
Polypropylene (PP) and polystyrene (PS) are immiscible and incompatible. Since both PP and PS components possess no reactive functional group, reactive compatibilization of a PP/PS blend is impossible unless certain reactive functional groups are imparted to either PP or PS. In this study we provide a simple approach to reactively compatibilize the nonreactive PP/PS blend system by physically functionalizing PP and PS with the addition of maleic anhydride grafted PP (PP‐g‐MA) and styrene maleic anhydride random copolymer (SMA), respectively. An epoxy monomer, serving as a coupler and possessing four epoxy groups able to react with the maleic anhydride of PP‐g‐MA and SMA, was then added during melt blending. Observations of the finer PS domain sizes and improved mechanical properties support the plausibility of reactive compatibilization of this nonreactive PP/PS blend by combining physically functionalized PP and PS with tetra‐glycidyl ether of diphenyl diamino methane (TGDDM) in a one‐step extrusion process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

20.
Aramid–multiwalled carbon nanotube (MWCNT) nanocomposites with different CNT loadings were prepared by the solution‐blending technique. Aramid oligomeric chains having reactive amine end‐groups were covalently grafted and wrapped over the surface of acid‐functionalized MWCNTs. The presence of functional groups and surface modification of MWCNTs were studied using Raman, Fourier transform infrared and X‐ray photoelectron spectroscopic and transmission/scanning electron microscopic techniques. Addition of these MWCNTs resulted in a homogeneous dispersion throughout the aramid matrix. Dynamic mechanical thermal analysis showed an increase in the storage modulus and the glass transition temperature involved with α‐relaxations on CNT loading. The coefficient of thermal expansion (CTE) of aramid was reduced on loading with such CNTs. Strong interfacial interactions of the matrix with the surface‐modified CNTs reduced the stress‐transfer problem in the composite material and resulted in higher modulus of 4.26 GPa and a glass transition temperature of 338.5 °C, whereas the CTE was reduced to 101.8 ppm °C?1 on addition of only 2.5 wt% CNTs in the aramid matrix. © 2016 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号