首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several scheduling techniques were designed for the base station (BS) of IEEE 802.16e wireless interoperability of microwave access networks. However, depending on the BS scheduler alone to determine the servicing order of each connection might affect the accuracy of the scheduling process because the BS does not necessarily have enough up‐to‐date information about the current state of the connections at the subscriber station. In this paper, we propose a preemption‐based scheduling algorithm that focuses on improving the quality of service requirements of real‐time service flow classes. The proposed algorithm incorporates two schedulers, one at the BS and another one at the subscriber station. We have implemented and integrated the proposed algorithm with the network simulator NS2 using the Network and Distributed Systems Laboratory wireless interoperability of microwave access module. Simulation results have shown that the proposed approach outperforms other scheduling algorithms in terms of enhancing the throughput and the average delay of real‐time quality of service classes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
IEEE 802.16 (WiMax) technology is designed to support broadband speeds over wireless networks for the coming era of broadband wireless access (BWA). IEEE 802.16 is expected to provide transmission of high‐rate and high‐volume multimedia data streams for fixed and mobile applications. As an extension of point‐to‐multipoint (PMP) configuration, the IEEE 802.16 mesh mode provides a quicker and more flexible approach for network deployment. Multimedia networking requires quality‐of‐service (QoS) support, which demands elaborate mechanisms in addition to the four service types defined in the specification. By examining standard centralized and distributed scheduling/routing schemes in the mesh mode from QoS aspect, a BS‐controlled and delay‐sensitive scheduling/routing scheme is proposed in the paper. Associate mechanisms including admission control, flow setup and link state monitoring are also proposed. Integration of the proposed mechanisms is presented as a complete QoS framework. Simulation study has demonstrated that the average delay as well as the delay jitters per hop in the proposed scheme is smaller than that of the distributed scheme and much smaller than that of the centralized scheme. Furthermore, proposed mechanisms can also achieve higher throughput than the contrasts and generate much smaller signaling overhead, making the proposed framework a promising scheme for multimedia support in the IEEE 802.16 mesh network. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A data transmission process of the centralized wireless network controlled by IEEE 802.16 protocol, in which a set of subscriber stations utilizes the common channel to transmit data to the base station, is discussed. The developed analytical model makes it possible to investigate the efficiency of upstream traffic transmission, including channel reservation using the random multiple access algorithm and packet sending with allowance for bandwidth request piggybacking onto data. The analytical estimates of packet registration and service durations are presented.  相似文献   

4.
In this paper, we propose a mechanism for multicast data transmission in IEEE 802.16 mesh networks aimed at increasing the throughput by incorporating mini-slot spatial reuse. The proposed mechanism includes two novel algorithms: a source-based multicast tree topology construction algorithm followed by an interference-aware multicast scheduling algorithm. The proposed multicast interfer-ence-aware scheduling algorithm can be ap-plied to both source-based and rendez-vous-based multicast tree topologies. Results of our simulation study show that in compari-son to the mechanism used for the IEEE 802.16’s standard, the proposed multicast tree generation algorithm reduces the number of consumed mini-slots by 64% on average. Moreover, using the proposed interfer-ence-aware scheduling algorithm decreases the number of required mini-slots by a further 22% on average. Therefore, the proposed multicast scheduling mechanism shows a higher throughput than the previous ap-proaches and it is more scalable with respect to increasing the number of multicast groups as well as increasing the number of members inside each multicast group.  相似文献   

5.
Niyato  D. Hossain  E. 《IEEE network》2007,21(3):6-14
One of the promising applications of IEEE 802.16 (WiMAX)-based wireless mesh/relay networks is to provide infrastructure/backhaul support for IEEE 802.11-based mobile hotspots. In this article we present an architecture for integrating IEEE 802.11 WLANs with IEEE 802.16-based multihop wireless mesh infrastructure to relay WLAN traffic to the Internet. The major research issues in this integrated architecture are outlined and related work is reviewed. A game-theoretic model is developed for radio resource management in this integrated network architecture. In particular, a multiplayer bargaining game formulation is used for fair bandwidth allocation and optimal admission control of different types of connections (e.g., WLAN connections, relay connections, and connections from standalone subscriber stations) in an IEEE 802.16 base station/mesh router. Both connection-level and inconnection-level performances for this bandwidth management and admission control framework are presented  相似文献   

6.
IEEE 802.16 standard defines the air interface specifications for broadband access in wireless metropolitan area networks. Although the medium access control signaling has been well-defined in the IEEE 802.16 specifications, resource management and scheduling, which are crucial components to guarantee quality of service performances, still remain as open issues. In this paper, we propose adaptive queue-aware uplink bandwidth allocation and rate control mechanisms in a subscriber station for polling service in IEEE 802.16 broadband wireless networks. While the bandwidth allocation mechanism adaptively allocates bandwidth for polling service in the presence of higher priority unsolicited grant service, the rate control mechanism dynamically limits the transmission rate for the connections under polling service. Both of these schemes exploit the queue status information to guarantee the desired quality of service (QoS) performance for polling service. We present a queuing analytical framework to analyze the proposed resource management model from which various performance measures for polling service in both steady and transient states can be obtained. We also analyze the performance of best-effort service in the presence of unsolicited grant service and polling service. The proposed analytical model would be useful for performance evaluation and engineering of radio resource management alternatives in a subscriber station so that the desired quality of service performances for polling service can be achieved. Analytical results are validated by simulations and typical numerical results are presented.  相似文献   

7.
Recently, there has been a steady trend toward the development of subscriber stations (SSs) to enable the ubiquitous communications. In the mobile environment, the power consumption of an SS is an important performance indicator because its battery life is limited. Many existing power-saving schemes for the IEEE 802.16e Mobile WiMax system have been proposed, such as scheduling algorithms for the sleep intervals. However, this type of approaches may be unrealistic for heavy network traffic since the SSs almost always have data to transmit. In this paper, we propose a new power-saving scheme by introducing the pair-wise matching procedure between the SSs prior to uplink data transmission in the WiMax mesh mode. According to the quality-of-service (QoS) requirement, we can preset the desired packet error rate (PER) or signal-to-interference-plus-noise-ratio (SINR) at the receiver end. Given the network topology and the channel state information, the required transmitting power per coded bit at each SS can be calculated. Then we may establish a cost function associated with the required transmitting power per coded bit and thus the optimal matching can be achieved by our proposed minimum weight matching algorithm. The numerical results show the significant improvement of the transmitting power consumption using our proposed method over the conventional scheme when we consider three aspects such as channel effects, coding/modulation options and network topology.  相似文献   

8.
Wireless mesh network (WMN) is emerging as an important networking architecture for future wireless communications. The mesh mode supported in IEEE 802.16 protocol provides a TDMA solution for WMN, in which scheduling is an important issue. In this paper, we discuss the issues on how to satisfy a set of bandwidth requests in IEEE 802.16 WMNs using minimal radio resources (or solving minimal schedule length problem). In consideration of transmission overhead and adaptive modulation and coding (AMC), two cross-layer scheduling algorithms are proposed, namely max-transmission and priority-based algorithms. In particular, they are proposed based on a physical interference model, instead of a protocol interference model as suggested in the literature. For the priority-based algorithm, we study several priority criteria based on different cross-layer information. An iterative scheme for QoS traffic is introduced to guarantee fairness when traffic load exceeds the network capacity. Simulation results show that our algorithms outperform the existing schemes based on protocol model, and they also ensure better fairness among different nodes.  相似文献   

9.
Performance Evaluation of the IEEE 802.16 MAC for QoS Support   总被引:2,自引:0,他引:2  
The IEEE 802.16 is a standard for broadband wireless communication in metropolitan area networks (MAN). To meet the QoS requirements of multimedia applications, the IEEE 802.16 standard provides four different scheduling services: unsolicited grant service (UGS), real-time polling service (rtPS), non-real-time polling service (nrtPS), and Best Effort (BE). The paper is aimed at verifying, via simulation, the effectiveness of rtPS, nrtPS, and BE (but UGS) in managing traffic generated by data and multimedia sources. Performance is assessed for an IEEE 802.16 wireless system working in point-to-multipoint (PMP) mode, with frequency division duplex (FDD), and with full-duplex subscriber stations (SSs). Our results show that the performance of the system, in terms of throughput and delay, depends on several factors. These include the frame duration, the mechanisms for requesting uplink bandwidth, and the offered load partitioning, i.e., the way traffic is distributed among SSs, connections within each SS, and traffic sources within each connection. The results also highlight that the rtPS scheduling service is a very robust scheduling service for meeting the delay requirements of multimedia applications  相似文献   

10.
In the last few years, the metropolitan area networks (MAN) have increased their popularity and attracted the interest of the most important research groups all over the world. Among several standards, IEEE 802.16 has taken a relevant role providing high data rate in a big covering range with low implementation costs and multi‐traffic communications. The IEEE 802.16 networks can have a pre‐defined structure, with a central base station (BS) covering a cell in which a variable number of subscriber stations (SSs) can work. This paper deals with the proposal of a quality of service (QoS) driven scheduling algorithm to be used in an IEEE 802.16 network where different traffic types coexist. In particular, the paper mainly focuses on best effort data and VoIP communications, by proposing a scheduling technique that allows an efficient resource management of both traffic types by considering their specific QoS flavor. The performance evaluation has been carried out by considering both the phases of contention and packet scheduling, by means of a theoretical approach and computer simulations. Numerical results show the performance of the proposed algorithm by focusing on a scenario where the BS schedules the best effort and VoIP traffics of several SSs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
This paper studies packet transmission scheduling for real-time constant-bit-rate (CBR) traffic in IEEE 802.16-based wireless mesh networks. We first formulate and solve the scheduling problem as a binary linear programming problem. The computational complexity of the optimum scheduling solution may prevent it from being implemented in practice. We then propose a heuristic scheme, namely bottleneck first scheduling scheme, where scheduling decisions at stations (base station or subscriber stations) with higher traffic loads are done before those at stations with lower traffic loads. At each station, scheduling decisions for CBR packets with more hops to their destinations are done first. Numerical results show that the proposed scheduling scheme achieves the same capacity as the optimal one while obtaining satisfactory delay performance. Dongmei Zhao received the Ph.D. degree in Electrical and Computer Engineering from the University of Waterloo, Waterloo, Ontario, Canada in June 2002. Since July 2002 she has been with the Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada where she is an assistant professor. Dr. Zhao’s research interests include modeling and performance analysis, quality-of-service provisioning, access control and admission control in wireless networks. Dr. Zhao is a member of the IEEE and a registered Professional Engineer of Ontario. Jun Zou received the B.S. and M. Eng. Degrees from Tianjin University, China in 1999 and 2002, respectively. He worked at Siemens Communication Networks Ltd., Beijing from 2002 to 2004. Currently, he is a Ph.D. student at McMaster University, Canada. His research interests include wireless networking, routing protocols, architecture of next generation networks, network security and their applications in telecommunication industry.  相似文献   

12.
Wireless communications play an important role in improving transportation environment safety and providing Internet access for vehicles. This paper proposes a QoS-aware two-level uplink dynamic bandwidth allocation (DBA) algorithm for IEEE 802.16j-based vehicular networks. IEEE 802.16j is an extension of standard IEEE 802.16 to support relay mode operation where traffics from/to subscriber stations (SS) are relayed to/from a base station (BS) via a relay station (RS). In such a vehicular network, the IEEE 802.16j BSs are installed along a highway, RSs are installed in large vehicles such as coaches, and the 802.16j interface is equipped on SSs such as individual passengers’ mobile devices within a moving coach. In the proposed DBA algorithm, a utility function, which considers characteristics of different types of services, is designed. The objective of the proposed two-level DBA algorithm is to allocate bandwidth to different types of services from BS to RSs and then from a RS to SSs with given quality of service (QoS) requirements. It aims at maximizing the utility of the overall network and minimizing the average queuing delay of the overall network. The simulation results show the effectiveness and efficiency of the proposed DBA algorithm.  相似文献   

13.
Cellular networks have been widely used to support many new audio-and video-based multimedia applications. The demand for higher data rate and diverse services has driven the research on multihop cellular networks (MCNs). With its ad hoc network features, an MCN can offer many additional advantages, such as increased network throughput, scalability and coverage. However, providing ad hoc capability to MCNs is challenging as it may require proper wireless interfaces. In this article, the architecture of IEEE 802.16 network interface to provide ad hoc capability for MCNs is investigated, with its focus on the IEEE 802.16 mesh networking and scheduling. Several distributed routing algorithms based on network entry mechanism are studied and compared with a centralized routing algorithm. It is observed from the simulation results that 802.16 mesh networks have limitations on providing sufficient bandwidth for the traffic from the cellular base stations when a cellular network size is relatively large.  相似文献   

14.
In this paper, we propose a novel distributed routing algorithm for IEEE 802.16/WiMax based mesh networks. Our algorithm aims at providing routes for traffic flows with minimum end-to-end delays. Based on the underlying IEEE802.16 standard distributed scheduling mechanism, our routing algorithm is incorporated into the medium access control (MAC) layer. Each node determines the next-hop nodes for the passing flows according to the scheduling information and attempts to forward packets in the very earliest slots. In addition, a loop cancelation mechanism is proposed to avoid being trapped in path loops and thus guarantees the accessibility of our algorithm. The simulation results show that our proposal can considerably reduce the delay of traffic flows and also achieve load balance to a certain degree.  相似文献   

15.
Recently IEEE 802.16 WiMAX has attracted a lot of attention in wireless networking research and applications. To enable a flexible and cost-effective deployment, mesh networking mode is defined in WiMAX standard. In this paper, we introduce a system model of WiMAX mesh networking with the focus on entry process, frame structure, centralized and distributed scheduling. The state-of-the-art WiMAX mesh networking research is reviewed. In addition, we propose an effective QoS differentiation scheme for the IEEE 802.16 WiMAX mesh networks. Both collocated scenario and general topology are theoretically analyzed and compared. Illustrative numerical examples are presented to demonstrate the effectiveness of the proposed strategy. The impact of key parameters on the performance is discussed for differentiating multiple classes of services. Several open issues are summarized as a guideline for future topics in WiMAX mesh networking research.  相似文献   

16.
The IEEE 802.16 standard provides a high degree of flexibility for setting up and operating wireless broadband networks in metropolitan environments. The standard supports numerous capabilities, including mesh topologies and multimedia communications. In this paper, we study these two features by investigating how efficiently an IEEE 802.16 mesh network can treat distributed multimedia traffic by providing differentiated quality of service (QoS). A key component of the system is the ldquoenhanced frame registry tree schedulerrdquo (E-FRTS) that provides QoS-aware resource allocation using a tree structure to prepare the creation of time frames and reduce processing requirements at the beginning of each frame. Simulation results show that distributed multimedia traffic can be efficiently supported in mesh 802.16 networks, provided efficient scheduling and a reasonable number of hops.  相似文献   

17.
针对无线城域网PMP模式下的竞争问题,提出了一种中心调度的竞争解决方案CSCR(centralized scheduling contention resolution)。通过对每一时间帧内活动用户站(subscriber stations)数目的预测,基站(basestation)给所有用户站提供了一个优化的竞争窗口,所有用户站都采用该窗口独立地参与竞争。理论分析和模拟结果表明,与IEEE802.16推荐的基于二进制指数回退BEB(binary exponential backoff)算法的方案相比,CSCR方案不但易于实现,而且能更加有效地利用无线资源,同时减少请求接入延时。  相似文献   

18.
Service-oriented wireless mesh networks have recently been receiving intensive attention as a pivotal component to implement the concept of ubiquitous computing due to their easy and cost-effective deployment. To deliver a variety of services to subscriber stations, a large volume of traffic is exchanged via mesh routers in the mesh backbone network. One of the critical problems in service-oriented wireless mesh networks is to improve the network throughput. Wireless network coding is a key technology to improve network throughput in multihop wireless networks since it can exploit not only the broadcast nature of the wireless channel, but also the native physical-layer coding ability by mixing simultaneously arriving radio waves at relay nodes. We first analyze the throughput improvement obtained by wireless network coding schemes in wireless mesh networks. Then we develop a heuristic joint link scheduling, channel assignment, and routing algorithm that can improve the network throughput for service-oriented wireless mesh networks. Our extensive simulations show that wireless network coding schemes can improve network throughput by 34 percent.  相似文献   

19.
In wireless networks, when a mobile roaming station decides to initiate a handover, it should scan multiple channels operated by neighboring base stations (BSs) (or access points (APs)) in order to find an appropriate target base station before the actual handover. In some wireless networks, the active base station is able to provide a list of channels operated by neighboring base stations. However, some of these candidate channels may not be accessible to the mobile station (MS); nonetheless, the MS scans the candidate channels consecutively. For this reason, it may take a relatively long time for the MS to select an adequate target base station channel. This process can degrade the quality of service (QoS) during handovers. To shorten the scanning latency efficiently, in this paper we propose a cooperative channel scanning method whereby groups of MSs scan candidate channels using a dispersive schedule. They then share the scanning results amongst themselves, which results in a fast handover channel decision. To apply the proposed method to a real network environment, we present a group scanning architecture and detailed application scenarios appropriate for IEEE 802.16e worldwide interoperability for microwave access (WiMAX) networks. Numerical analyses and simulation results show that our proposed method achieves a shorter target channel scanning latency. Our method is thus more efficient in terms of scanning time and channel selection accuracy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Mobile Worldwide Interoperability for Microwave Access networks usually provide flexible sleep‐mode operations that allow mobile stations to conserve energy during sleep or active mode. For example, the IEEE 802.16e/m standard presents three power‐saving classes that can be associated with different types of network connections to decrease the power consumption of mobile stations. However, previous studies failed to fully use the sleep‐mode features to save energy of a mobile station while simultaneously maintaining unicast and multicast/broadcast connections. This study proposes an energy‐efficient packet scheduling algorithm for both multicast and broadcast services that does not violate the QoS requirements of real‐time connections. The proposed activity aggregation selection mechanism approach can minimize total power consumption of mobile stations in one cell and simultaneously satisfy the QoS of real‐time connections. This method improves energy efficiency for IEEE 802.16e/m and the activity aggregation selection mechanism approach can optimize sleeping mode features to save the energy of mobile stations with overlapping connection packets The simulations in this study verified the proposed approach.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号