首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The formation of core‐shell morphology within the dispersed phase was studied for composite droplet polymer‐blend systems comprising a polyamide‐6 matrix, ethylene‐propylene‐diene terpolymer (EPDM) shell and high density polyethylene (HDPE) core. In this article, the effect of EPDM with different molecular weights on the morphology and properties of the blends were studied. To improve the compatibility of the ternary blends, EPDM was modified by grafting with maleic anhydride (EPDM‐g‐MAH). It was found that core‐shell morphology with EPDM‐g‐MAH as shell and HDPE as core and separated dispersion morphology of EPDM‐g‐MAH and HDPE phase were obtained separately in PA6 matrix with different molecular weights of EPDM‐g‐MAH in the blends. DSC measurement indicated that there may be some co‐crystals in the blends due to the formation of core‐shell structure. Mechanical tests showed that PA6/EPDM‐g‐MAH/HDPE ternary blends with the core‐shell morphology exhibited a remarkable rise in the elongation at break. With more perfect core‐shell composite droplets and co‐crystals, the impact strength of the ternary blends could be greatly increased to 51.38 kJ m?2, almost 10 times higher than that of pure PA6 (5.50 kJ m?2). POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

2.
In this article, polyamide 6 (PA6), maleic anhydride grafted ethylene‐propylene‐diene monomer (EPDM‐g‐MA), high‐density polyethylene (HDPE) were simultaneously added into an internal mixer to melt‐mixing for different periods. The relationship between morphology and rheological behaviors, crystallization, mechanical properties of PA6/EPDM‐g‐MA/HDPE blends were studied. The phase morphology observation revealed that PA6/EPDM‐g‐MA/HDPE (70/15/15 wt %) blend is constituted from PA6 matrix in which is dispersed core‐shell droplets of HDPE core encapsulated by EPDM‐g‐MA phase and indicated that the mixing time played a crucial role on the evolution of the core‐shell morphology. Rheological measurement manifested that the complex viscosity and storage modulus of ternary blends were notable higher than the pure polymer blends and binary blends which ascribed different phase morphology. Moreover, the maximum notched impact strength of PA6/EPDM‐g‐MA/HDPE blend was 80.7 KJ/m2 and this value was 10–11 times higher than that of pure PA6. Particularly, differential scanning calorimetry results indicated that the bulk crystallization temperature of HDPE (114.6°C) was partly weakened and a new crystallization peak appeared at a lower temperature of around 102.2°C as a result of co‐crystal of HDPE and EPDM‐g‐MA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
In this paper, the compatibilization of polypropylene (PP)/high-density polyethylene (HDPE) blend was studied through morphological and interfacial tension analysis. Three types of compatibilizers were tested: ethylene-propylene-diene copolymer (EPDM), ethylene-vinylacetate copolymer (EVA) and styrene-ethylene/butylene-styrene triblock copolymer (SEBS). The morphology of the blends was studied by scanning electron microscopy. The interfacial tension between the components of the blends was evaluated using small amplitude oscillatory shear analysis. Emulsion curves relating the average radius of the dispersed phase and the interfacial tension to the compatibilizer concentration added to the blend were obtained. It was shown that EPDM was more efficient as an emulsifier for PP/HDPE blend than EVA or SEBS. The relative role of interfacial tension reduction and coalescence reduction to particle size reduction was also addressed. It was observed that the role of coalescence reduction is small, mainly for PP/HDPE (90/10) blends compatibilized by EPDM, EVA or SEBS. The results indicated that the role of coalescence reduction to particle size reduction is lower for blends for which interfacial tension between its components is low at compatibilizer saturation.  相似文献   

4.
Polypropylene (PP)/nylon 11/maleated ethylene‐propylene‐diene rubber (EPDM‐g‐MAH) ternary polymer blends were prepared via melt blending in a corotating twin‐screw extruder. The effect of nylon 11 and EPDM‐g‐MAH on the phase morphology and mechanical properties was investigated. Scanning electron microscopy observation revealed that there was apparent phase separation for PP/EPDM‐g‐MAH binary blends at the level of 10 wt % maleated elastomer. For the PP/nylon 11/EPDM‐g‐MAH ternary blends, the dispersed phase morphology of the maleated elastomer was hardly affected by the addition of nylon 11, whereas the reduced dispersed phase domains of nylon 11 were observed with the increasing maleated elastomer loading. Furthermore, a core‐shell structure, in which nylon 11 as a rigid core was surrounded by a soft EPDM‐g‐MAH shell, was formed in the case of 10 wt % nylon 11 and higher EPDM‐g‐MAH concentration. In general, the results of mechanical property measurement showed that the ternary blends exhibited inferior tensile strength in comparison with the PP matrix, but superior toughness. Especially low‐temperature impact strength was obtained. The toughening mechanism was discussed with reference to the phase morphology. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
In this work, five ternary blends based on 70% by weight (wt %) of polypropylene (PP) with 30% wt of polycarbonate (PC)/poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene)(SEBS) dispersed phase consists of 15 wt % PC and 15 wt % reactive (maleic anhydride grafted) and nonreactive SEBS mixtures at various ratios were prepared in a co‐rotating twin screw extruder. scanning electron microscopy (SEM) micrographs showed that the blends containing only nonreactive SEBS exhibited a fine dispersion of core‐shell particles. With decreasing the SEBS/SEBS‐g‐Maleic Anhydride (MAH) weight ratio, the morphology changed from the core‐shell particles to a mixed of core‐shell, rod‐like and individual particles. This variation in phase morphology affected the thermal and mechanical properties of the blends. DSC results showed that the blends containing only nonreactive SEBS exhibited a minimum in degree of crystallinity due to the homogeneous nucleation of core‐shell particles. Mechanical testing showed that in the SEBS/SEBS‐g‐MAH weight ratio of 50/50, the modulus and impact strength increased compared with the PP matrix while the yield stress had minimum difference with that of PP matrix. These effects could be attributed to the formation of those especial microstructures revealed by the SEM studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
In this work, the relationship between properties and morphologies of PA6/EPDM-g-MA/HDPE ternary blends was studied. Two processing methods (one- and two-step methods) were applied to prepare the PA6/EPDM-g-MA/HDPE ternary blends. The dependence of the phase morphology on interfacial interaction and processing method was discussed here. It was found that core-shell morphology (core: HDPE, shell: EPDM-g-MA in PA6 matrix) appeared in PA6/EPDM-g-MA/HDPE ternary blends, and in comparison to the blend prepared by one-step method, the core-shell morphology with thicker EPDM-g-MA shell appeared in the blend prepared by two-step method. In this case, a super toughened PA6 ternary blends with the Izod impact strength of 72.51 kJ/m2 which is 4–5 times higher than PA6/EPDM-g-MA binary blend and 9–10 times higher than pure PA6 could be achieved. Moreover, the rheological results indicated that the storage modulus of ternary blends was heavily dependent on the phase morphology. The core-shell structure with thicker EPDM-g-MA shell would weaken the contribution of interfacial energy to the storage modulus of ternary blends.  相似文献   

7.
This work was aimed to counteract the effect of ethylene‐α‐olefin copolymers (POE) by reinforcing the polypropylene (PP)/POE blends with high density polyethylene (HDPE) particles and, thus, achieved a balance between toughness and strength for the PP/POE/HDPE blends. The results showed that addition of HDPE resulted in an increasing wide stress plateau and more ductile fracture behavior. With the increase of HDPE content, the elongation at break of the blends increased rapidly without obvious decrease of yield strength and Young's modulus, and the notched izod impact strength of the blends can reach as high as 63 kJ/m2 at 20 wt % HDPE loading. The storage modulus of PP blends increased and the glass transition temperature of each component of the blends shifted close to each other when HDPE was added. The crystallization of HDPE phase led to an increase of the total crystallinity of the blend. With increasing HDPE content, the dispersed POE particle size was obviously decreased, and the interparticle distance was effectively reduced and the blend rearranged into much more and obvious core‐shell structure. The fracture surface also changed from irregular striation to the regularly distant striations, displaying much obvious character of tough fracture. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The tensile properties and morphology of the polyolefin ternary blends of ethylenepropylene–diene terpolymer (EPDM), polypropylene and high density polyethylene were studied. Blends were prepared in a laboratory internal mixer where EPDM was cured in the presence of PP and HDPE under shear with dicumyl peroxide (DCP). For comparison, blends were also prepared from EPDM which was dynamically cured alone and blended with PP and HDPE later (cure–blend). The effect of DCP concentration, intensity of the shear mixing, and rubber/plastics composition was studied. The tensile strength and modulus increased with increasing DCP concentration in the blends of EPDM-rich compositions but decreased with increasing DCP concentration in blends of PP-rich compositions. In the morphological analysis by scanning electron microscopy (SEM), the small amount of EPDM acted as a compatibilizer to HDPE and PP. It was also revealed that the dynamic curing process could reduce the domain size of the crosslinked EPDM phase. When the EPDM forms the matrix, the phase separation effect becomes dominant between the EPDM matrix and PP or HDPE domain due to the crosslinking in the matrix.  相似文献   

9.
An interfacial model was proposed for the ternary thermoplastics (matrix)/elastomer/rigidparticle filler composite with high strength, high toughness, and high modulus. A dispersed phase of rigid particle as a core and elastomer as a shell that has a good interfacial adhesion with the matrix is the key point of the model. A composite with high strength, high toughness, and high modulus was obtained in the styrene (ST) and maleic anhydride (MAH) modified high-density polyethylene (HDPE)/ethylene-propylene-diene monomer (EPDM) rubber/carbon black (CB) with ditertiary butyl peroxide (DTBP) as the initiator through the reactive extrusion. The electrical resistivity measurement showed that CB of the unmodified composites distributed at the interface of the HDPE and EPDM, while that of the modified composites distributed mainly in the EPDM phase. The morphology of the ternary composite was consistent with the wetting coefficient analysis. That the mechanical properties of the α-ray–irradiated unmodified composites were not as good as those of the modified composites further indicated that the mechanical properties of the composite could not be improved significantly purely by introducing the interfacial adhesion and matrix crosslinking without forming the proposed dispersed phase structure. SEM observation supported the conclusion that the different phase structures are the major reason that leads to the different toughness. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Ethylene‐propylene‐diene‐terpolymer (EPDM) and polypropylene (PP)‐based uncross‐linked and dynamically cross‐linked blends were prepared both in an internal mixer and in a corotating twin‐screw extruder. The effects of composition, plasticization and mixing equipment on the morphology development and the final viscoelastic properties were studied. In the uncross‐linked blends, the plasticization resulted in a coarser morphology. Furthermore, it was shown that the majority of the plasticizer resided in the EPDM phase, enabling its deformation in the flow direction. In addition, the intensive mixing conditions inside the twin‐screw extruder resulted in a finer morphology. In the dynamically cross‐linked blends, the twin‐screw extrusion process resulted in a higher level of gel content with larger EPDM domains. The plasticization showed again a coarsening effect, resulting in interconnected cross‐linked EPDM domains. An interesting interfacial phenomenon was observed especially in the plasticized vulcanized blends where nanometer size occluded PP domains were stripped off and eroded into the EPDM phase. With the exception of the nonplasticized uncross‐linked blends, the viscoelastic properties of all other blending systems were found to be directly affected by the morphology, gel content (in the case of cross‐linked blends), and the presence of the plasticizer. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

11.
The morphology of some ternary blends was investigated. In all of the blends polypropylene, as the major phase, was blended with two different minor phases, ethylene–propylene–diene terpolymer (EPDM) or ethylene–propylene–rubber (EPR) as the first minor phase and high‐density polyethylene (HDPE) or polystyrene (PS) as the second minor phase. All the blends were investigated in a constant composition of 70/15/15 wt %. Theoretical models predict that the dispersed phase of a multiphase polymer blend will either form an encapsulation‐type phase morphology or phases will remain separately dispersed, depending on which morphology has the lower free energy or positive spreading coefficient. Interfacial interaction between phases was found to play a significant role in determining the type of morphology of these blend systems. A core–shell‐type morphology for HDPE encapsulated by rubber was obtained for PP/rubber/PE ternary blends, whereas PP/rubber/PS blends showed a separately dispersed type of morphology. These results were found to be in good agreement with the theoretical predictions. Steady‐state torque for each component was used to study the effect of melt viscosity ratio on the morphology of the blends. It was found that the torque ratios affect only the size of the dispersed phases and have no appreciable influence on the type of morphology. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1129–1137, 2001  相似文献   

12.
Dynamic vulcanization was successfully applied to epoxy resin reinforced polypropylene (PP)/ethylene‐octene copolymer (POE) blends, and the effects of different compatibilizers on the morphology and properties of dynamically cured PP/POE/epoxy blends were studied. The results show that dynamically cured PP/POE/epoxy blends compatibilized with maleic anhydride‐grafted polypropylene (MAH‐g‐PP) have a three‐phase structure consisting of POE and epoxy particles dispersed in the PP continuous phase, and these blends had improved tensile strength and flexural modulus. While using maleic anhydride‐grafted POE (MAH‐g‐POE) as a compatibilizer, the structure of the core‐shell complex phase and the PP continuous phase showed that epoxy particles could be embedded in MAH‐g‐POE in the blends, and gave rise to an increase in impact strength, while retaining a certain strength and modulus. DSC analysis showed that the epoxy particles in the blends compatibilized with MAH‐g‐PP were more efficient nucleating agents for PP than they were in the blends compatibilized with MAH‐g‐POE. WAXD analysis shows that compatibilization do not disturb the crystalline structure of PP in the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
聚烯烃改性PET的研究   总被引:8,自引:2,他引:8  
通过PET与PP、HDPE、EPDM挤出共混,注射模塑制得试样。经DTA、SEM和力学性能测试,表征了共混体系的热行为、结构形态和力学性能。结果表明,在PET/PP(EPDM、HDPE)共混体系中,加入少量的PP-g-MI(EPDM-g-MAH、PE-g-MI),可较好地改善PEt与PP(EPDM、HDPE)之间的相容性,使分散相在PET基体连续相中分散均匀,分散相尺寸减小,增加了两相间界面的粘结力;同时对PET的结晶有较强的促进作用,使其冷结晶温度降低,改善了PET的加工性能;并且能大幅度提高共混物的冲击强度。  相似文献   

14.
The composition effect on morphology of polypropylene/ethylene–propylene–diene terpolymer/polyethylene (PP/EPDM/PE) and polypropylene/ethylene–propylene–diene terpolymer/polystyrene (PP/EPDM/PS) ternary blends has been investigated. In all of the blends, polypropylene as the major phase was blended with two minor phases, that is, EPDM and PE or PS. From morphological studies using the SEM technique a core–shell morphology for PP/EPDM/PE and separated dispersed morphology for PP/EPDM/PS were observed. These results were found to be in agreement with the theoretical predictions. The composition of components affected only the size of dispersed phases and had no appreciable effect on the type of morphology. The size of each dispersed phase, whether it forms core or shell or disperses separately in matrix, can be related directly to its composition in the blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1138–1146, 2001  相似文献   

15.
In this work, the linear viscoelastic behavior of PP/PS and PP/HDPE blends modified with SEBS and EPDM, respectively, was studied. Small amplitude oscillatory shear measurements were carried out at different temperatures, ranging from 190°C to 240°C. The storage (G') and loss (G") moduli curves obtained were horizontally shifted and curves of angle delta (δ) (δ = atan (G"/G')) as a function of complex shear modulus (G*), known as van Gurp plots, were obtained at several temperatures, to test the applicability of time‐temperature superposition principle (TTS) to these blends. The results showed that successful application of TTS depends on the flow energy of activation and horizontal shift factors of the individual components of the blend, on the interfacial properties of the blend and on the concentration of compatibilizer added to the blend. TTS application failed for PP/PS blend, but held for PP/HDPE blend. Addition of SEBS to PP/PS blends promoted successful TTS application at specific concentrations that corresponded to interfacial saturation of the dispersed phase. Addition of EPDM did not imply sensitive change on TTS application for the PP/HDPE blends.  相似文献   

16.
This work is aim to study the encapsulated morphology development in ternary blends of polyamide 6/high density polyethylene/maleic anhydride‐grafted‐ethylene propylene diene monomer (PA6/HDPE/EPDM‐g‐MA) and polyamide 6/maleic anhydride‐grafted‐high density polyethylene/ethylene propylene diene monomer (PA6/HDPE‐g‐MA/EPDM) through thermodynamically control described by Harkins spreading theory. The phase morphology was confirmed by using scanning electron microscope (SEM) and selective solvent extraction revealed that PA6/HDPE/EPDM‐g‐MA blend having a composition of 70/15/15 vol % is constituted of polyamide 6 matrix with dispersed composite droplets of HDPE subinclusions encapsulated by EPDM‐g‐MA phase, while for PA6/HDPE‐g‐MA/EPDM blend with the same composition is constituted of polyamide 6 matrix with dispersed composite droplets of HDPE‐g‐MA subinclusions encapsulated by EPDM phase. Quiescent annealing test revealed that for PA6/HDPE/EPDM‐g‐MA blend, a perfect core–shell structure with one HDPE particle encapsulated by EPDM‐g‐MA phase was formed during annealing, and for PA6/HDPE‐g‐MA/EPDM blend, a novel complete inverting HDPE‐g‐MA/EPDM core/shell structure was achieved. Moreover, quantitative analysis about coalescent behaviors of HDPE‐g‐MA and HDPE subinclusions during quiescent annealing were investigated by image analysis and the result suggested that the grafted maleic anhydride group in HDPE‐g‐MA, acted as a role of steric repulsion, could suppress coalescence effects, thus leaded to a lower coalescent rate than that of HDPE subinclusions. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39937.  相似文献   

17.
In this article, the morphology, crystallization, and rheological behaviors of polypropylene (PP)/ethylene‐propylene‐diene terpolymer (EPDM) binary blend and PP/EPDM/calcium carbonate nanoparticles (nano‐CaCO3) ternary blend were investigated. Two processing methods, i.e., direct extrusion and two‐step extrusion, were employed to prepare the PP/EPDM/CaCO3 blend. The influence of EPDM and nano‐CaCO3 respectively on phase morphology and properties of PP/EPDM blend and PP/EPDM/CaCO3 blend were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and dynamic rheometer. The crystallinity and crystallization temperature of PP/EPDM blend were improved in comparison to pure PP due to addition of EPDM, but kept invariable with the increased EPDM loading. As the EPDM content was increased, the mobility of PP molecular chains was weakened. Compared with direct extruded blend, less and finer nano‐CaCO3 was dispersed in matrix of two‐step extruded blend. Accordingly, the increased nano‐CaCO3 in matrix gave rise to a weaker increment in crystallinity and crystallization temperature of two‐step extruded blend, and a later platform of tanδ curve. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
The morphological and rheological properties of thermoplastic elastomer nanocomposites (TPE nanocomposites) were studied using different viscosities of polypropylene (PP) and ethylene‐propylene‐diene monomer (EPDM) rubber content (20, 40, 60 wt%). The components, namely EPDM, PP, Cloisite 15A, and maleic anhydride‐modified PP as compatibilizer, were compounded by a one‐step melt mixing process in a laboratory internal mixer. The structure of the nanocomposites was characterized with X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and rheometry in small amplitude oscillatory shear. The distribution state of the clay between the two phases (PP and EPDM) was found to be dependent on the viscosity ratio of PP to EPDM. In the nanocomposites prepared based on low viscosity PP (LVP) and EPDM, the clay was mostly dispersed into the PP phase and the size of the dispersed rubber particles decreased in comparison with unfilled but otherwise similar blends. However, the dispersed elastomer droplet size in the high viscosity PP (HVP) blends containing 40 and 60% EPDM increased with the introduction of the clay. For TPE nanocomposites, the dependence of the storage modulus (G′) on angular frequency (ω) followed a clear nonterminal behavior. The increase in the storage modulus and the decrease in the terminal zone slope of the elastic modulus curve were found to be larger in the LVP nanocomposite in comparison with the HVP sample. The yield stress of nanoclay‐filled blends prepared with LVP increased more than that of HVP samples. The tensile modulus improved for all nanocomposites but a higher percentage of increase was observed in the case of LVP samples. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

19.
Polyolefin binary and ternary blends were prepared from polypropylene (PP), an ethylene–α‐olefin copolymer (mPE), and high‐density polyethylene (HDPE) on the basis of the viscosity ratio of the dispersed phase to the continuous phase. In PP/mPE/HDPE blends, fibrils were observed when the dispersed‐phase (mPE/HDPE) viscosity was less than that of PP, or when the viscosity of mPE was less than that of PP, although the viscosity of mPE/HDPE was greater than that of PP. The notched impact strength and mechanical properties such as the yield strength, flexural modulus, and hardness of PP/mPE binary blends further increased with the addition of HDPE according to the type of HDPE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4027–4036, 2004  相似文献   

20.
In this paper the influence of temperature and composition on the dynamic behavior and morphology of polypropylene (PP)/high-density polyethylene (HDPE) blends were studied. The blend composition ranged from 5 to 30 wt% of dispersed phase (HDPE) and the temperatures ranged from 180 to 220 °C. The interfacial tension between PP and HDPE at temperatures of 180, 200 and 220 °C was obtained from fitting Palierne's emulsion model [1] to the experimental data of PP/HDPE blends with different compositions and from the weighted relaxation spectra of PP/HDPE blends with different compositions, following Gramespacher and Meissner [2] analysis. The interfacial tension between PP and HDPE as inferred from the rheological measurements was shown to depend on PP/HDPE blend composition. However, the results indicated that there is a range of PP/HDPE blend composition for which interfacial tension between PP and HDPE is constant. Considering these values, it was shown that interfacial tension between PP and HDPE decreases linearly with increasing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号